Skip to main content

Construction of Machine Learned Force Fields with Quantum Chemical Accuracy: Applications and Chemical Insights

  • Chapter
  • First Online:
Machine Learning Meets Quantum Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 968))

Abstract

Highly accurate force fields are a mandatory requirement to generate predictive simulations. Here we present the path for the construction of machine learned molecular force fields by discussing the hierarchical pathway from generating the dataset of reference calculations to the construction of the machine learning model, and the validation of the physics generated by the model. We will use the symmetrized gradient-domain machine learning (sGDML) framework due to its ability to reconstruct complex high-dimensional potential energy surfaces (PES) with high precision even when using just a few hundreds of molecular conformations for training. The data efficiency of the sGDML model allows using reference atomic forces computed with high-level wave-function-based approaches, such as the gold standard coupled-cluster method with single, double, and perturbative triple excitations (CCSD(T)). We demonstrate that the flexible nature of the sGDML framework captures local and non-local electronic interactions (e.g., H-bonding, lone pairs, steric repulsion, changes in hybridization states (e.g., \(sp^2 \rightleftharpoons sp^3\)), n → π interactions, and proton transfer) without imposing any restriction on the nature of interatomic potentials. The analysis of sGDML models trained for different molecular structures at different levels of theory (e.g., density functional theory and CCSD(T)) provides empirical evidence that a higher level of theory generates a smoother PES. Additionally, a careful analysis of molecular dynamics simulations yields new qualitative insights into dynamics and vibrational spectroscopy of small molecules close to spectroscopic accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is important to notice that while the scaling of the performance in ML-FFs depends only on the number of atoms, while in the case of ab initio quantum chemical calculations their performance depends on the level of theory and on the size of the basis used to approximate the wave-function and the number of electrons.

  2. 2.

    To the best knowledge of the authors up to this day these are the only two ways have been used in the PES reconstruction problem.

  3. 3.

    The symbol \(\hat {f}\) will be reserved to represent the predictor function of the machine learning model.

  4. 4.

    The components of the force vector are orthogonal in \(\mathbb {R}^{3N}\), space where the function is defined.

  5. 5.

    The reason of such difference between NNs and kernel models is that, while kernels rely on feature engineering (i.e., handcrafted descriptors), NNs represent an end-to-end formalism to describe the data. This means that NNs require more data to infer the representation that optimally describes the system.

  6. 6.

    Even though this is a fundamental property of quantum systems, the invariance of the energy to permutations of atoms of the same species is preserved even in classical mechanics. As will be the case in all the examples discussed in this chapter.

  7. 7.

    Even though the MAE is in the same order as the required accuracy, we have to mention that this error is computed in the whole dataset. This means that the error in the highly sampled regions (e.g., local minima) will be lower than the reported MAE.

References

  1. T. Saue, L. Visscher, H.J. Aa. Jensen, R. Bast, with contributions from V. Bakken, K.G. Dyall, S. Dubillard, U. Ekström, E. Eliav, T. Enevoldsen, E. Faßhauer, T. Fleig, O. Fossgaard, A.S.P. Gomes, E.D. Hedegård, T. Helgaker, J. Henriksson, M. Iliaš, Ch.R. Jacob, S. Knecht, S. Komorovský, O. Kullie, J.K. Lærdahl, C.V. Larsen, Y.S. Lee, H.S. Nataraj, M.K. Nayak, P. Norman, G. Olejniczak, J. Olsen, J.M.H. Olsen, Y.C. Park, J.K. Pedersen, M. Pernpointner, R. di Remigio, K. Ruud, P. Sałek, B. Schimmelpfennig, A. Shee, J. Sikkema, A.J. Thorvaldsen, J. Thyssen, J. van Stralen, S. Villaume, O. Visser, T. Winther, S. Yamamoto, DIRAC, a relativistic ab initio electronic structure program, Release DIRAC18 (2018). Available at https://doi.org/10.5281/zenodo.2253986, see also http://www.diracprogram.org

  2. L.F. Pašteka, E. Eliav, A. Borschevsky, U. Kaldor, P. Schwerdtfeger, Phys. Rev. Lett. 118(2), 023002 (2017)

    Article  ADS  Google Scholar 

  3. M. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation (Oxford University Press, Oxford, 2010)

    MATH  Google Scholar 

  4. W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley, Weinheim, 2015)

    Google Scholar 

  5. B.J. Alder, T.E. Wainwright, J. Chem. Phys. 31(2), 459 (1959). https://doi.org/10.1063/1.1730376

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Rahman, Phys. Rev. 136, A405 (1964). https://doi.org/10.1103/PhysRev.136.A405

    Article  ADS  Google Scholar 

  7. L. Verlet, Phys. Rev. 159, 98 (1967). https://doi.org/10.1103/PhysRev.159.98

    Article  ADS  Google Scholar 

  8. A. Rahman, F.H. Stillinger, J. Chem. Phys. 55(7), 3336 (1971). https://doi.org/10.1063/1.1676585

    Article  ADS  Google Scholar 

  9. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79(2), 926 (1983). https://doi.org/10.1063/1.445869

    Article  ADS  Google Scholar 

  10. M.W. Mahoney, W.L. Jorgensen, J. Chem. Phys. 112(20), 8910 (2000). https://doi.org/10.1063/1.481505

    Article  ADS  Google Scholar 

  11. J. Tersoff, Phys. Rev. B 37, 6991 (1988). https://doi.org/10.1103/PhysRevB.37.6991

    Article  ADS  Google Scholar 

  12. A. Warshel, P.K. Sharma, M. Kato, W.W. Parson, Biochim. Biophys. Acta Proteins Proteomics 1764(11), 1647 (2006). https://doi.org/10.1016/j.bbapap.2006.08.007

    Article  Google Scholar 

  13. M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443 (1984). https://doi.org/10.1103/PhysRevB.29.6443

    Article  ADS  Google Scholar 

  14. P.K. Weiner, P.A. Kollman, J. Comput. Chem. 2(3), 287 (1981). https://doi.org/10.1002/jcc.540020311

    Article  Google Scholar 

  15. B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, M. Karplus, J. Comput. Chem. 4(2), 187 (1983). https://doi.org/10.1002/jcc.540040211

    Article  Google Scholar 

  16. T.A. Halgren, J. Comput. Chem. 17(5–6), 490 (1996). https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P

    Article  Google Scholar 

  17. T.A. Soares, P.H. Hünenberger, M.A. Kastenholz, V. Kräutler, T. Lenz, R.D. Lins, C. Oostenbrink, W.F. van Gunsteren, J. Comput. Chem. 26(7), 725 (2005). https://doi.org/10.1002/jcc.20193

    Article  Google Scholar 

  18. J. Friedman, T. Hastie, R. Tibshirani, The Elements of Statistical Learning, vol. 1 (Springer Series in Statistics, New York, 2001)

    MATH  Google Scholar 

  19. V.N. Vapnik, The Nature of Statistical Learning Theory (Springer, Berlin, 1995)

    Book  MATH  Google Scholar 

  20. Z. Li, J.R. Kermode, A. De Vita, Phys. Rev. Lett. 114, 096405 (2015). https://doi.org/10.1103/PhysRevLett.114.096405

    Article  ADS  Google Scholar 

  21. E.V. Podryabinkin, A.V. Shapeev, Comput. Mater. Sci. 140, 171 (2017). https://doi.org/10.1016/j.commatsci.2017.08.031

    Article  Google Scholar 

  22. P.O. Dral, A. Owens, S.N. Yurchenko, W. Thiel, J. Chem. Phys. 146(24), 244108 (2017). https://doi.org/10.1063/1.4989536

    Article  ADS  Google Scholar 

  23. A. Mardt, L. Pasquali, H. Wu, F. Noé, Nat. Commun. 9(1), 5 (2018). https://doi.org/10.1038/s41467-017-02388-1

    Article  ADS  Google Scholar 

  24. F. Noé, S. Olsson, J. Köhler, H. Wu, Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning. Science, 365(6457), eaaw1147 (2019)

    Google Scholar 

  25. M. Rupp, A. Tkatchenko, K.R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett. 108(5), 58301 (2012). https://doi.org/10.1103/PhysRevLett.108.058301

    Article  ADS  Google Scholar 

  26. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. 104(13), 136403 (2010). https://doi.org/10.1103/PhysRevLett.104.136403

    Article  ADS  Google Scholar 

  27. K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O.A. von Lilienfeld, A. Tkatchenko, K.R. Müller, J. Chem. Theory Comput. 9(8), 3404 (2013). https://doi.org/10.1021/ct400195d

    Article  Google Scholar 

  28. A.P. Bartók, G. Csányi, Int. J. Quantum Chem. 115(16), 1051 (2015). https://doi.org/10.1002/qua.24927

    Article  Google Scholar 

  29. M. Rupp, R. Ramakrishnan, O.A. von Lilienfeld, J. Phys. Chem. Lett. 6(16), 3309 (2015). https://doi.org/10.1021/acs.jpclett.5b01456

    Article  Google Scholar 

  30. S. De, A.P. Bartok, G. Csányi, M. Ceriotti, Phys. Chem. Chem. Phys. 18, 13754 (2016). https://doi.org/10.1039/C6CP00415F

    Article  Google Scholar 

  31. N. Artrith, A. Urban, G. Ceder, Phys. Rev. B 96(1), 014112 (2017). https://doi.org/10.1103/PhysRevB.96.014112

    Article  ADS  Google Scholar 

  32. A.P. Bartók, S. De, C. Poelking, N. Bernstein, J.R. Kermode, G. Csányi, M. Ceriotti, Sci. Adv. 3(12), e1701816 (2017). https://doi.org/10.1126/sciadv.1701816

    Article  ADS  Google Scholar 

  33. A. Glielmo, P. Sollich, A. De Vita, Phys. Rev. B 95, 214302 (2017). https://doi.org/10.1103/PhysRevB.95.214302

    Article  ADS  Google Scholar 

  34. K. Yao, J.E. Herr, J. Parkhill, J. Chem. Phys. 146(1), 014106 (2017). https://doi.org/10.1063/1.4973380

    Article  ADS  Google Scholar 

  35. F.A. Faber, L. Hutchison, B. Huang, J. Gilmer, S.S. Schoenholz, G.E. Dahl, O. Vinyals, S. Kearnes, P.F. Riley, O.A. von Lilienfeld, J. Chem. Theory Comput. 13(11), 5255 (2017). https://doi.org/10.1021/acs.jctc.7b00577

    Article  Google Scholar 

  36. M. Eickenberg, G. Exarchakis, M. Hirn, S. Mallat, L. Thiry, J. Chem. Phys. 148(24), 241732 (2018). https://doi.org/10.1063/1.5023798

    Article  ADS  Google Scholar 

  37. A. Glielmo, C. Zeni, A. De Vita, Phys. Rev. B 97(18), 184307 (2018). https://doi.org/10.1103/PhysRevB.97.184307

    Article  ADS  Google Scholar 

  38. A. Grisafi, D.M. Wilkins, G. Csányi, M. Ceriotti, Phys. Rev. Lett. 120, 036002 (2018). https://doi.org/10.1103/PhysRevLett.120.036002

    Article  ADS  Google Scholar 

  39. Y.H. Tang, D. Zhang, G.E. Karniadakis, J. Chem. Phys. 148(3), 034101 (2018). https://doi.org/10.1063/1.5008630

    Article  ADS  Google Scholar 

  40. W. Pronobis, A. Tkatchenko, K.R. Müller, J. Chem. Theory Comput. 14(6), 2991 (2018). https://doi.org/10.1021/acs.jctc.8b00110

    Article  Google Scholar 

  41. F.A. Faber, A.S. Christensen, B. Huang, O.A. von Lilienfeld, J. Chem. Phys. 148(24), 241717 (2018). https://doi.org/10.1063/1.5020710

    Article  ADS  Google Scholar 

  42. J. Behler, M. Parrinello, Phys. Rev. Lett. 98(14), 146401 (2007). https://doi.org/10.1103/PhysRevLett.98.146401

    Article  ADS  Google Scholar 

  43. K.V.J. Jose, N. Artrith, J. Behler, J. Chem. Phys. 136(19), 194111 (2012). https://doi.org/10.1063/1.4712397

    Article  ADS  Google Scholar 

  44. J. Behler, J. Chem. Phys. 145(17), 170901 (2016). https://doi.org/10.1063/1.4966192

    Article  ADS  Google Scholar 

  45. M. Gastegger, J. Behler, P. Marquetand, Chem. Sci. 8, 6924 (2017). https://doi.org/10.1039/C7SC02267K

    Article  Google Scholar 

  46. K.T. Schütt, F. Arbabzadah, S. Chmiela, K.R. Müller, A. Tkatchenko, Nat. Commun. 8, 13890 (2017). https://doi.org/10.1038/ncomms13890

    Article  ADS  Google Scholar 

  47. K.T. Schütt, H.E. Sauceda, P.J. Kindermans, A. Tkatchenko, K.R. Müller, J. Chem. Phys. 148(24), 241722 (2018). https://doi.org/10.1063/1.5019779

    Article  ADS  Google Scholar 

  48. K.T. Schütt, P.J. Kindermans, H.E. Sauceda, S. Chmiela, A. Tkatchenko, K.R. Müller, in Advances in Neural Information Processing Systems 30 (Curran Associates, New York, 2017), pp. 991–1001

    Google Scholar 

  49. K. Ryczko, K. Mills, I. Luchak, C. Homenick, I. Tamblyn, Comput. Mater. Sci. 149, 134 (2018). https://doi.org/10.1016/j.commatsci.2018.03.005

    Article  Google Scholar 

  50. L. Zhang, J. Han, H. Wang, R. Car, E. Weinan, Phys. Rev. Lett. 120(14), 143001 (2018). https://doi.org/10.1103/PhysRevLett.120.143001

    Article  ADS  Google Scholar 

  51. A.P. Bartók, R. Kondor, G. Csányi, Phys. Rev. B 87(18), 184115 (2013). https://doi.org/10.1103/PhysRevB.87.184115

    Article  ADS  Google Scholar 

  52. G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia, K. Hansen, A. Tkatchenko, K.R. Müller, O.A. von Lilienfeld, New J. Phys. 15(9), 95003 (2013)

    Article  Google Scholar 

  53. V. Botu, R. Ramprasad, Phys. Rev. B 92, 094306 (2015). https://doi.org/10.1103/PhysRevB.92.094306

    Article  ADS  Google Scholar 

  54. F. Brockherde, L. Vogt, L. Li, M.E. Tuckerman, K. Burke, K.R. Müller, Nat. Commun. 8(1), 872 (2017). https://doi.org/10.1038/s41467-017-00839-3

    Article  ADS  Google Scholar 

  55. T.D. Huan, R. Batra, J. Chapman, S. Krishnan, L. Chen, R. Ramprasad, NPJ Comput. Mater. 3(1), 37 (2017). https://doi.org/10.1038/s41524-017-0042-y

    Article  ADS  Google Scholar 

  56. T. Bereau, R.A. DiStasio Jr., A. Tkatchenko, O.A. Von Lilienfeld, J. Chem. Phys. 148(24), 241706 (2018). https://doi.org/10.1063/1.5009502

    Article  ADS  Google Scholar 

  57. N. Lubbers, J.S. Smith, K. Barros, J. Chem. Phys. 148(24), 241715 (2018). https://doi.org/10.1063/1.5011181

    Article  ADS  Google Scholar 

  58. K. Kanamori, K. Toyoura, J. Honda, K. Hattori, A. Seko, M. Karasuyama, K. Shitara, M. Shiga, A. Kuwabara, I. Takeuchi, Phys. Rev. B 97(12), 125124 (2018). https://doi.org/10.1103/PhysRevB.97.125124

    Article  ADS  Google Scholar 

  59. T.S. Hy, S. Trivedi, H. Pan, B.M. Anderson, R. Kondor, J. Chem. Phys. 148(24), 241745 (2018). https://doi.org/10.1063/1.5024797

    Article  ADS  Google Scholar 

  60. J.S. Smith, O. Isayev, A.E. Roitberg, Chem. Sci. 8, 3192 (2017). https://doi.org/10.1039/C6SC05720A

    Article  Google Scholar 

  61. J. Wang, S. Olsson, C. Wehmeyer, A. Perez, N.E. Charron, G. de Fabritiis, F. Noé, C. Clementi, Machine learning of coarse-grained molecular dynamics force fields. ACS Cent. Sci. 5(5), 755–767 (2019)

    Google Scholar 

  62. R. Winter, F. Montanari, F. Noé, D.A. Clevert, Chem. Sci. 10, 1692 (2019). https://doi.org/10.1039/C8SC04175J

    Article  Google Scholar 

  63. A.S. Christensen, F.A. Faber, O.A. von Lilienfeld, J. Chem. Phys. 150(6), 064105 (2019). https://doi.org/10.1063/1.5053562

    Article  ADS  Google Scholar 

  64. S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, K.R. Müller, Sci. Adv. 3(5), e1603015 (2017). https://doi.org/10.1126/sciadv.1603015

    Article  ADS  Google Scholar 

  65. S. Chmiela, H.E. Sauceda, K.R. Müller, A. Tkatchenko, Nat. Commun. 9(1), 3887 (2018). https://doi.org/10.1038/s41467-018-06169-2

    Article  ADS  Google Scholar 

  66. H.E. Sauceda, S. Chmiela, I. Poltavsky, K.R. Müller, A. Tkatchenko, J. Chem. Phys. 150(11), 114102 (2019)

    Article  ADS  Google Scholar 

  67. M. Alber, S. Lapuschkin, P. Seegerer, M. Hägele, K.T. Schütt, G. Montavon, W. Samek, K.R. Müller, S. Dähne, P.J. Kindermans, iNNvestigate neural networks. J. Mach. Learn. Res. 20(93), 1–8 (2019)

    MathSciNet  Google Scholar 

  68. M. Meila, S. Koelle, H. Zhang, A regression approach for explaining manifold embedding coordinates. Preprint. (2018). arXiv:1811.11891

    Google Scholar 

  69. S. Lapuschkin, S. Wäldchen, A. Binder, G. Montavon, W. Samek, K.R. Müller, Nat. Commun. 10(1), 1096 (2019)

    Article  ADS  Google Scholar 

  70. W. Samek, G. Montavon, A. Vedaldi, L.K. Hansen, K.R. Muller (eds.), Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS, vol. 11700 (Springer, 2019). https://doi.org/10.1007/978-3-030-28954-6

  71. S. Chmiela, H.E. Sauceda, I. Poltavsky, K.R. Müller, A. Tkatchenko, Comput. Phys. Commun. (2019). https://doi.org/10.1016/j.cpc.2019.02.007

  72. K. Yao, J.E. Herr, D.W. Toth, R. Mckintyre, J. Parkhill, Chem. Sci. 9(8), 2261 (2018). https://doi.org/10.1039/C7SC04934J

    Article  Google Scholar 

  73. K.T. Schütt, P. Kessel, M. Gastegger, K.A. Nicoli, A. Tkatchenko, K.R. Müller, J. Chem. Theory Comput. 15(1), 448 (2019). https://doi.org/10.1021/acs.jctc.8b00908

    Article  Google Scholar 

  74. J. Behler, S. Lorenz, K. Reuter, J. Chem. Phys. 127(1), 014705 (2007). https://doi.org/10.1063/1.2746232

    Article  ADS  Google Scholar 

  75. J. Behler, J. Chem. Phys. 134(7), 074106 (2011). https://doi.org/10.1063/1.3553717

    Article  ADS  Google Scholar 

  76. J. Behler, Phys. Chem. Chem. Phys. 13, 17930 (2011). https://doi.org/10.1039/C1CP21668F

    Article  Google Scholar 

  77. E. Solak, R. Murray-smith, W.E. Leithead, D.J. Leith, C.E. Rasmussen, in Advances in Neural Information Processing Systems 15 (MIT Press, Cambridge, 2003), pp. 1057–1064

    Google Scholar 

  78. S. Chmiela, Towards exact molecular dynamics simulations with invariant machine-learned models. Ph.D. thesis, Technische Universität Berlin, 2019. https://doi.org/10.14279/depositonce-8635

  79. D. Pachauri, R. Kondor, V. Singh, in Advances in Neural Information Processing Systems (2013), pp. 1860–1868

    Google Scholar 

  80. V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, M. Scheffler, Comput. Phys. Commun. 180(11), 2175 (2009). https://doi.org/10.1016/j.cpc.2009.06.022

    Article  ADS  Google Scholar 

  81. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  82. A. Tkatchenko, M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009). https://doi.org/10.1103/PhysRevLett.102.073005

    Article  ADS  Google Scholar 

  83. J.M. Turney, A.C. Simmonett, R.M. Parrish, E.G. Hohenstein, F.A. Evangelista, J.T. Fermann, B.J. Mintz, L.A. Burns, J.J. Wilke, M.L. Abrams, N.J. Russ, M.L. Leininger, C.L. Janssen, E.T. Seidl, W.D. Allen, H.F. Schaefer, R.A. King, E.F. Valeev, C.D. Sherrill, T.D. Crawford, WIREs Comput. Mol. Sci. 2(4), 556 (2012). https://doi.org/10.1002/wcms.93

    Article  Google Scholar 

  84. R.M. Parrish, L.A. Burns, D.G.A. Smith, A.C. Simmonett, A.E. DePrince, E.G. Hohenstein, U. Bozkaya, A.Y. Sokolov, R. Di Remigio, R.M. Richard, J.F. Gonthier, A.M. James, H.R. McAlexander, A. Kumar, M. Saitow, X. Wang, B.P. Pritchard, P. Verma, H.F. Schaefer, K. Patkowski, R.A. King, E.F. Valeev, F.A. Evangelista, J.M. Turney, T.D. Crawford, C.D. Sherrill, J. Chem. Theory Comput. 13(7), 3185 (2017). https://doi.org/10.1021/acs.jctc.7b00174

    Article  Google Scholar 

  85. D.G.A. Smith, L.A. Burns, D.A. Sirianni, D.R. Nascimento, A. Kumar, A.M. James, J.B. Schriber, T. Zhang, B. Zhang, A.S. Abbott, E.J. Berquist, M.H. Lechner, L.A. Cunha, A.G. Heide, J.M. Waldrop, T.Y. Takeshita, A. Alenaizan, D. Neuhauser, R.A. King, A.C. Simmonett, J.M. Turney, H.F. Schaefer, F.A. Evangelista, A.E. DePrince, T.D. Crawford, K. Patkowski, C.D. Sherrill, J. Chem. Theory Comput. 14(7), 3504 (2018). https://doi.org/10.1021/acs.jctc.8b00286

    Article  Google Scholar 

  86. B. Anderson, T.S. Hy, R. Kondor (2019). Preprint. arXiv:1906.04015

    Google Scholar 

  87. M. Ceriotti, J. More, D.E. Manolopoulos, Comput. Phys. Commun. 185(3), 1019 (2014). https://doi.org/10.1016/j.cpc.2013.10.027

    Article  ADS  Google Scholar 

  88. S. Scheiner, Molecules 22(9), 1521 (2017). https://doi.org/10.3390/molecules22091521

    Article  Google Scholar 

  89. P. Hobza, Int. J. Quantum Chem. 90(3), 1071 (2002). https://doi.org/10.1002/qua.10313

    Article  MathSciNet  Google Scholar 

  90. A. Karpfen, E.S. Kryachko, J. Phys. Chem. A 113(17), 5217 (2009). https://doi.org/10.1021/jp9005923

    Article  Google Scholar 

  91. C. Wang, D. Danovich, S. Shaik, Y. Mo, J. Chem. Theory Comput. 13(4), 1626 (2017). https://doi.org/10.1021/acs.jctc.6b01133

    Article  Google Scholar 

  92. B. Kuhn, P. Mohr, M. Stahl, J. Med. Chem. 53(6), 2601 (2010). https://doi.org/10.1021/jm100087s

    Article  Google Scholar 

  93. A. Cembran, F. Bernardi, M. Garavelli, L. Gagliardi, G. Orlandi, J. Am. Chem. Soc. 126(10), 3234 (2004)

    Article  Google Scholar 

  94. R. Deepak, R. Sankararamakrishnan, Biophys. J. 110(9), 1967 (2016). https://doi.org/10.1016/j.bpj.2016.03.034

    Article  ADS  Google Scholar 

  95. R. Sarkar, S.R. Reddy, S. Mahapatra, H. Köppel, Chem. Phys. 482, 39 (2017). https://doi.org/10.1016/j.chemphys.2016.09.011

    Article  Google Scholar 

  96. P. Gruene, D.M. Rayner, B. Redlich, A.F.G. van der Meer, J.T. Lyon, G. Meijer, A. Fielicke, Science 321(5889), 674 (2008). https://doi.org/10.1126/science.1161166

    Article  ADS  Google Scholar 

  97. C. Romanescu, D.J. Harding, A. Fielicke, L.S. Wang, J. Chem. Phys. 137(1), 014317 (2012). https://doi.org/10.1063/1.4732308

    Article  ADS  Google Scholar 

  98. R.M. Balabin, Phys. Chem. Chem. Phys. 12, 5980 (2010). https://doi.org/10.1039/b924029b

    Article  Google Scholar 

  99. J.A. Ruiz-Santoyo, J. Wilke, M. Wilke, J.T. Yi, D.W. Pratt, M. Schmitt, L. Álvarez Valtierra, J. Chem. Phys. 144(4), 044303 (2016). https://doi.org/10.1063/1.4939796

    Article  ADS  Google Scholar 

  100. J.A. Davies, L.E. Whalley, K.L. Reid, Phys. Chem. Chem. Phys. 19, 5051 (2017). https://doi.org/10.1039/C6CP08132K

    Article  Google Scholar 

  101. F. Gmerek, B. Stuhlmann, E. Pehlivanovic, M. Schmitt, J. Mol. Struct. 1143, 265 (2017). https://doi.org/10.1016/j.molstruc.2017.04.092

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.C., A.T., and K.-R.M. thank the Deutsche Forschungsgemeinschaft, Germany (projects MU 987/20-1 and EXC 2046/1 [ID: 390685689]) for funding this work. A.T. is funded by the European Research Council with ERC-CoG grant BeStMo. This work was supported by the German Ministry for Education and Research as Berlin Big Data Centre (01IS14013A) and Berlin Center for Machine Learning (01IS18037I). This work was also supported by the Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (No. 2017-0-00451). This publication only reflects the authors views. Funding agencies are not liable for any use that may be made of the information contained herein. Part of this research was performed while the authors were visiting the Institute for Pure and Applied Mathematics, which is supported by the National Science Foundation, United States.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huziel E. Sauceda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sauceda, H.E., Chmiela, S., Poltavsky, I., Müller, KR., Tkatchenko, A. (2020). Construction of Machine Learned Force Fields with Quantum Chemical Accuracy: Applications and Chemical Insights. In: Schütt, K., Chmiela, S., von Lilienfeld, O., Tkatchenko, A., Tsuda, K., Müller, KR. (eds) Machine Learning Meets Quantum Physics. Lecture Notes in Physics, vol 968. Springer, Cham. https://doi.org/10.1007/978-3-030-40245-7_14

Download citation

Publish with us

Policies and ethics