Skip to main content

Molecular Dynamics with Neural Network Potentials

  • Chapter
  • First Online:
Machine Learning Meets Quantum Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 968))

Abstract

Molecular dynamics simulations are an important tool for describing the evolution of a chemical system with time. However, these simulations are inherently held back either by the prohibitive cost of accurate electronic structure theory computations or the limited accuracy of classical empirical force fields. Machine learning techniques can help to overcome these limitations by providing access to potential energies, forces, and other molecular properties modeled directly after an accurate electronic structure reference at only a fraction of the original computational cost. The present text discusses several practical aspects of conducting machine learning driven molecular dynamics simulations. First, we study the efficient selection of reference data points on the basis of an active learning inspired adaptive sampling scheme. This is followed by the analysis of a machine learning based model for simulating molecular dipole moments in the framework of predicting infrared spectra via molecular dynamics simulations. Finally, we show that machine learning models can offer valuable aid in understanding chemical systems beyond a simple prediction of quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Marx, J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  2. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987)

    MATH  Google Scholar 

  3. D. Frenkel, B. Smit, Understanding Molecular Simulation (Academic, Cambridge, 2001)

    MATH  Google Scholar 

  4. T.B. Blank, S.D. Brown, A.W. Calhoun, D.J. Doren, J. Chem. Phys. 103(10), 4129 (1995)

    Article  ADS  Google Scholar 

  5. D.A.R.S. Latino, R.P.S. Fartaria, F.F.M. Freitas, J. Aires-De-Sousa, F.M.S. Silva Fernandes, Int. J. Quantum Chem. 110(2), 432 (2010)

    Article  ADS  Google Scholar 

  6. J. Behler, Phys. Chem. Chem. Phys. 13, 17930 (2011)

    Article  Google Scholar 

  7. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. 104, 136403 (2010)

    Article  ADS  Google Scholar 

  8. B. Jiang, J. Li, H. Guo, Int. Rev. Phys. Chem. 35(3), 479 (2016)

    Article  Google Scholar 

  9. R. Ramakrishnan, O.A. von Lilienfeld, Machine Learning, Quantum Chemistry, and Chemical Space. Reviews in Computational Chemistry, chap. 5 (Wiley, Hoboken, 2017), pp. 225–256

    Google Scholar 

  10. V. Botu, R. Batra, J. Chapman, R. Ramprasad, J. Phys. Chem. C 121(1), 511 (2017)

    Article  Google Scholar 

  11. J. Behler, Angew. Chem. Int. Ed. 56(42), 12828 (2017)

    Article  Google Scholar 

  12. J. Behler, M. Parrinello, Phys. Rev. Lett. 98(14), 146401 (2007)

    Article  ADS  Google Scholar 

  13. J. Behler, J. Chem. Phys. 134(7), 074106 (2011)

    Article  ADS  Google Scholar 

  14. J. Behler, Int. J. Quantum Chem. 115, 1032 (2015)

    Article  Google Scholar 

  15. M. Gastegger, L. Schwiedrzik, M. Bittermann, F. Berzsenyi, P. Marquetand, J. Chem. Phys. 148(24), 241709 (2018)

    Article  ADS  Google Scholar 

  16. A. Pukrittayakamee, M. Malshe, M. Hagan, L.M. Raff, R. Narulkar, S. Bukkapatnum, R. Komanduri, J. Chem. Phys. 130(13), 134101 (2009)

    Article  ADS  Google Scholar 

  17. M. Gastegger, P. Marquetand, J. Chem. Theory Comput. 11(5), 2187 (2015)

    Article  Google Scholar 

  18. M. Gastegger, J. Behler, P. Marquetand, Chem. Sci. 8, 6924 (2017)

    Article  Google Scholar 

  19. F. Jensen, Introduction to Computational Chemistry, 2nd edn. (Wiley, Hoboken, 2007)

    Google Scholar 

  20. C.J. Cramer, Essentials of Computational Chemistry, 2nd edn. (Wiley, Hoboken, 2004)

    Google Scholar 

  21. T. Morawietz, V. Sharma, J. Behler, J. Chem. Phys. 136(6), 064103 (2012)

    Article  ADS  Google Scholar 

  22. K.T. Schütt, M. Gastegger, A. Tkatchenko, K.R. Müller, arXiv:1806.10349 [physics.comp-ph] (2018)

    Google Scholar 

  23. J.S. Smith, O. Isayev, A.E. Roitberg, Chem. Sci. 8, 3192 (2017)

    Article  Google Scholar 

  24. J.E. Herr, K. Yao, R. McIntyre, D.W. Toth, J. Parkhill, J. Chem. Phys. 148(24), 241710 (2018)

    Article  ADS  Google Scholar 

  25. J.S. Smith, B. Nebgen, N. Lubbers, O. Isayev, A.E. Roitberg, J. Chem. Phys. 148(24), 241733 (2018)

    Article  ADS  Google Scholar 

  26. H.S. Seung, M. Opper, H. Sompolinsky, Proceedings of the Fifth Annual Workshop on Computational Learning Theory (ACM, New York, 1992), pp. 287–294

    Google Scholar 

  27. M. Gastegger, C. Kauffmann, J. Behler, P. Marquetand, J. Chem. Phys. 144(19), 194110 (2016)

    Article  ADS  Google Scholar 

  28. M. Thomas, M. Brehm, R. Fligg, P. Vohringer, B. Kirchner, Phys. Chem. Chem. Phys. 15, 6608 (2013)

    Article  Google Scholar 

  29. F. Hirshfeld, Theor. Chim. Acta 44(2), 129 (1977)

    Article  Google Scholar 

  30. A.E. Sifain, N. Lubbers, B.T. Nebgen, J.S. Smith, A.Y. Lokhov, O. Isayev, A.E. Roitberg, K. Barros, S. Tretiak, J. Phys. Chem. Lett. 9(16), 4495 (2018)

    Article  Google Scholar 

  31. C.M. Breneman, K.B. Wiberg, J. Comput. Chem. 11(3), 361 (1990)

    Article  Google Scholar 

  32. R. Ramakrishnan, P.O. Dral, M. Rupp, O.A. Von Lilienfeld, Sci. Data 1, 140022 (2014)

    Article  Google Scholar 

  33. D.P. Kingma, J. Ba, arXiv preprint arXiv:1412.6980 (2014)

    Google Scholar 

  34. K. Schütt, P. Kessel, M. Gastegger, K. Nicoli, A. Tkatchenko, K.R. Müller, J. Chem. Theory Comput. 15(1), 448 (2018)

    Article  Google Scholar 

  35. K. Yao, J.E. Herr, D. Toth, R. Mckintyre, J. Parkhill, Chem. Sci. 9, 2261 (2018)

    Article  Google Scholar 

  36. R.S. Mulliken, J. Chem. Phys. 23(10), 1833 (1955)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.G. was provided financial support by the European Union Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement NO 792572. The computational results presented have been achieved in part using the Vienna Scientific Cluster (VSC). We thank J. Behler for providing the RuNNer code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Marquetand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gastegger, M., Marquetand, P. (2020). Molecular Dynamics with Neural Network Potentials. In: Schütt, K., Chmiela, S., von Lilienfeld, O., Tkatchenko, A., Tsuda, K., Müller, KR. (eds) Machine Learning Meets Quantum Physics. Lecture Notes in Physics, vol 968. Springer, Cham. https://doi.org/10.1007/978-3-030-40245-7_12

Download citation

Publish with us

Policies and ethics