Skip to main content

Introduction

  • Chapter
  • First Online:
Machine Learning Meets Quantum Physics

Abstract

Rational design of molecules and materials with desired properties requires both the ability to calculate accurate microscopic properties, such as energies, forces, and electrostatic multipoles of specific configurations, and efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. The tools that provide this are accurate first-principles calculations rooted in quantum mechanics, and statistical mechanics, respectively. Both of these come with a high computational cost that prohibits calculations for large systems or sampling-intensive applications, like long-timescale molecular dynamics simulations, thus presenting a severe bottleneck for searching the vast chemical compound space. To overcome this challenge, there have been increased efforts to accelerate quantum calculations with machine learning (ML).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.M. Bishop, Pattern Recognition and Machine Learning (Springer, Berlin, 2006)

    MATH  Google Scholar 

  2. Y. LeCun, Y. Bengio, G. Hinton, Nature 521(7553), 436 (2015)

    Article  ADS  Google Scholar 

  3. D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., Nature 529(7587), 484 (2016)

    Article  ADS  Google Scholar 

  4. D. Capper, D.T. Jones, M. Sill, V. Hovestadt, D. Schrimpf, D. Sturm, C. Koelsche, F. Sahm, L. Chavez, D.E. Reuss et al., Nature 555(7697), 469 (2018)

    Article  ADS  Google Scholar 

  5. A. Meyer, D. Zverinski, B. Pfahringer, J. Kempfert, T. Kuehne, S.H. Sündermann, C. Stamm, T. Hofmann, V. Falk, C. Eickhoff, Lancet Respir. Med. 6(12), 905 (2018)

    Article  Google Scholar 

  6. P. Jurmeister, M. Bockmayr, P. Seegerer, T. Bockmayr, D. Treue, G. Montavon, C. Vollbrecht, A. Arnold, D. Teichmann, K. Bressem et al., Sci. Transl. Med. 11(509), eaaw8513 (2019)

    Google Scholar 

  7. D. Ardila, A.P. Kiraly, S. Bharadwaj, B. Choi, J.J. Reicher, L. Peng, D. Tse, M. Etemadi, W. Ye, G. Corrado, et al., Nat. Med. 25(6), 954 (2019)

    Article  Google Scholar 

  8. J. Gemignani, E. Middell, R.L. Barbour, H.L. Graber, B. Blankertz, J. Neural Eng. 15(4), 045001 (2018)

    Article  ADS  Google Scholar 

  9. T. Nierhaus, C. Vidaurre, C. Sannelli, K.R. Müller, A. Villringer, J. Physiol. (2019). https://doi.org/10.1113/JP278118

  10. J.D. Haynes, G. Rees, Nat. Rev. Neurol. 7(7), 523 (2006)

    Article  Google Scholar 

  11. K.N. Kay, T. Naselaris, R.J. Prenger, J.L. Gallant, Nature 452(7185), 352 (2008)

    Article  ADS  Google Scholar 

  12. S. Lapuschkin, S. Wäldchen, A. Binder, G. Montavon, W. Samek, K.R. Müller, Nat. Commun. 10(1), 1096 (2019)

    Article  ADS  Google Scholar 

  13. W. Samek, Explainable AI: Interpreting, Explaining and Visualizing Deep Learning (Springer, Berlin, 2019)

    Book  Google Scholar 

  14. J. Behler, M. Parrinello, Phys. Rev. Lett. 98(14), 146401 (2007)

    Article  ADS  Google Scholar 

  15. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. 104(13), 136403 (2010)

    Article  ADS  Google Scholar 

  16. M. Rupp, A. Tkatchenko, K.R. Müller, O.A. Von Lilienfeld, Phys. Rev. Lett. 108(5), 058301 (2012)

    Article  ADS  Google Scholar 

  17. Z. Li, J.R. Kermode, A. De Vita, Phys. Rev. Lett. 114(9), 096405 (2015)

    Article  ADS  Google Scholar 

  18. J. Behler, Int. J. Quantum Chem. 115(16), 1032 (2015)

    Article  Google Scholar 

  19. W. Samek, G. Montavon, A. Vedaldi, L.K. Hansen, K.R. Müller, Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, vol. 11700 (Springer, Berlin, 2019)

    Book  Google Scholar 

Download references

Acknowledgements

All editors gratefully acknowledge support by the Institute of Pure and Applied Mathematics (IPAM) at the University of California Los Angeles during the long program on Understanding Many-Particle Systems with Machine Learning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Robert Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schütt, K.T., Chmiela, S., von Lilienfeld, O.A., Tkatchenko, A., Tsuda, K., Müller, KR. (2020). Introduction. In: Schütt, K., Chmiela, S., von Lilienfeld, O., Tkatchenko, A., Tsuda, K., Müller, KR. (eds) Machine Learning Meets Quantum Physics. Lecture Notes in Physics, vol 968. Springer, Cham. https://doi.org/10.1007/978-3-030-40245-7_1

Download citation

Publish with us

Policies and ethics