Skip to main content

Technological Realization of Polariton Systems

  • Chapter
  • First Online:
Polariton Physics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 229))

Abstract

Driven by the achievement of strong light–matter coupling and the observation of exciton–polaritons in microcavities, different experimental platforms for the study of light–matter interactions have been utilized. Recent developments highly benefited from the strive to obtain polariton BEC , and even electrically-driven polariton light sources for practical applications have been envisaged. This has required technological advances in growth and patterning to enable fabrication of the desired microcavities with two-dimensional excitonic gases at its core for coupling experiments and for the formation of quantum gases and superfluids based on polaritons. In this context, growth and processing of microcavity devices will be covered, beginning with typical examples originating from III/V epitaxy. Furthermore, a prominent approach for polariton device achievement in the form of a vertical-emitting-laser-like diode structure is presented. Thereafter, microcavity systems achieved with alternative material systems are summarized that each feature their own legitimacy, attractiveness and challenges, mainly developed and studied targeting room-temperature observation of BEC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    2,7-bis[9,9-di(4-methylphenyl)-fluoren-2-yl]-9,9-di(4-methylphenyl)fluorene.

  2. 2.

    Methyl-substituted ladder-type poly(para-phenylene).

  3. 3.

    A popular carbocyanine dye.

References

  1. R. Dingle, W. Wiegmann, C.H. Henry, Quantum states of confined carriers in very thin Al\(_{x}\)Ga\(_{1-x}\)As-GaAs-Al\(_{x}\)Ga\(_{1-x}\)As heterostructures. Phys. Rev. Lett. 33, 827 (1974)

    Article  ADS  Google Scholar 

  2. M.A. Herman, H. Sitter, Molecular Beam Epitaxy: Fundamentals and Current Status (Springer, Berlin, 1996)

    Chapter  Google Scholar 

  3. G.B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice (Elsevier, Amsterdam, 2012)

    Google Scholar 

  4. G. Roumpos, W.H. Nitsche, S. Höfling, A. Forchel, Y. Yamamoto, Gain-induced trapping of microcavity exciton polariton condensates. Phys. Rev. Lett. 104(12), 126403 (2010)

    Article  ADS  Google Scholar 

  5. G. Tosi, G. Christmann, N.G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P.G. Savvidis, J.J. Baumberg, Sculpting oscillators with light within a nonlinear quantum fluid. Nat. Phys. 8, 190–194 (2012)

    Article  ADS  Google Scholar 

  6. O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut, R. Idrissi Kaitouni, J.L. Staehli, F. Morier-Genoud, B. Deveaud, Polariton quantum boxes in semiconductor microcavities. Appl. Phys. Lett. 88(6), 061105–3 (2006)

    Article  ADS  Google Scholar 

  7. R. Idrissi Kaitouni, O. El Daïf, A. Baas, M. Richard, T. Paraiso, P. Lugan, T. Guillet, F. Morier-Genoud, J.D. Ganière, J.L. Staehli, V. Savona, B. Deveaud. Engineering the spatial confinement of exciton polaritons in semiconductors. Phys. Rev. B. 74(15), 155311 (2006)

    Google Scholar 

  8. T. Gutbrod, M. Bayer, A. Forchel, J.P. Reithmaier, T.L. Reinecke, S. Rudin, P.A. Knipp, Weak and strong coupling of photons and excitons in photonic dots. Phys. Rev. B 57(16), 9950 (1998)

    Article  ADS  Google Scholar 

  9. D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, J. Bloch, Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities. Phys. Rev. Lett. 100(4), 047401 (2008)

    Article  ADS  Google Scholar 

  10. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Bose-Einstein condensation of microcavity polaritons in a trap. Science 316(5827), 1007–1010 (2007)

    Article  ADS  Google Scholar 

  11. S. Utsunomiya, L. Tian, G. Roumpos, C.W. Lai, N. Kumada, T. Fujisawa, M. Kuwata-Gonokami, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, Observation of Bogoliubov excitations in exciton-polariton condensates. Nat. Phys. 4(9), 700–705 (2008)

    Article  Google Scholar 

  12. E.A. Cerda-Méndez, D. Krizhanovskii, K. Biermann, K. Guda, R. Bradley, R. Hey, P.V. Santos, M.S. Skolnick, One dimensional confinement of microcavity polaritons using non-piezoelectric surface acoustic waves. Phys. E: Low-Dimens. Syst. Nanostructures 42(10), 2548–2551 (2010)

    Article  ADS  Google Scholar 

  13. E.A. Cerda-Méndez, D.N. Krizhanovskii, K. Biermann, R. Hey, M.S. Skolnick, P.V. Santos, Wavefunction of polariton condensates in a tunable acoustic lattice. New J. Phys. 14(7), 075011 (2012)

    Article  ADS  Google Scholar 

  14. P. Lugan, D. Sarchi, V. Savona, Theory of trapped polaritons in patterned microcavities. Phys. Stat. Sol. C 3, 2428–2431 (2006)

    Article  ADS  Google Scholar 

  15. N. Na, Y. Yamamoto, Massive parallel generation of indistinguishable single photons via the polaritonic superfluid to Mott-insulator quantum phase transition. New J. Phys. 12, 123001 (2010)

    Article  ADS  Google Scholar 

  16. A. Verger, C. Ciuti, I. Carusotto, Polariton quantum blockade in a photonic dot. Phys. Rev. B 73(19), 193306 (2006)

    Google Scholar 

  17. D. Sanvitto, A. Amo, L. Viña, R. André, D. Solnyshkov, G. Malpuech, Exciton-polariton condensation in a natural two-dimensional trap. Phys. Rev. B, 80(4), 045301 (2009)

    Google Scholar 

  18. M. Maragkou, A.J.D. Grundy, E. Wertz, A. Lemaître, I. Sagnes, P. Senellart, J. Bloch, P.G. Lagoudakis, Spontaneous nonground state polariton condensation in pillar microcavities. Phys. Rev. B 81(8), 081307 (2010)

    Article  ADS  Google Scholar 

  19. M. Bayer, T. Gutbrod, J.P. Reithmaier, A. Forchel, T.L. Reinecke, P.A. Knipp, A.A. Dremin, V.D. Kulakovskii, Optical modes in photonic molecules. Phys. Rev. Lett. 81(12), 2582–2585 (1998)

    Article  ADS  Google Scholar 

  20. M. Bayer, T. Gutbrod, A. Forchel, T.L. Reinecke, P.A. Knipp, R. Werner, J.P. Reithmaier, Optical demonstration of a crystal band structure formation. Phys. Rev. Lett. 83(25), 5374–5377 (1999)

    Article  ADS  Google Scholar 

  21. M. Galbiati, L. Ferrier, D.D. Solnyshkov, D. Tanese, E. Wertz, A. Amo, M. Abbarchi, P. Senellart, I. Sagnes, A. Lemaítre, E. Galopin, G. Malpuech, J. Bloch, Polariton condensation in photonic molecules. Phys. Rev. Lett. 108, 126403 (2012)

    Article  ADS  Google Scholar 

  22. M. Abbarchi, A. Amo, V.G. Sala, D.D. Solnyshkov, H. Flayac, L. Ferrier, I. Sagnes, E. Galopin, A. Lemaítre, G. Malpuech, J. Bloch, Macroscopic quantum self-trapping and josephson oscillations of exciton polaritons. Nat. Phys. 9, 275 (2013)

    Article  Google Scholar 

  23. K.G. Lagoudakis, B. Pietka, M. Wouters, R. André, B. Deveaud-Plédran, Coherent oscillations in an exciton-polariton josephson junction. Phys. Rev. Lett. 105(12), 120403 (2010)

    Article  ADS  Google Scholar 

  24. S. Levy, E. Lahoud, I. Shomroni, J. Steinhauer, The a.c. and d.c. josephson effects in a Bose-Einstein condensate. Nature, 449(7162), 579–583 (2007)

    Article  ADS  Google Scholar 

  25. N.Y. Kim, K. Kusudo, C. Wu, N. Masumoto, A. Löffler, S. Höfling, N. Kumada, L. Worschech, A. Forchel, Y. Yamamoto, Dynamical d-wave condensation of exciton-polaritons in a two-dimensional square-lattice potential. Nat. Phys. 7(9), 681–686 (2011)

    Article  ADS  Google Scholar 

  26. C.W. Lai, N.Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M.D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, Y. Yamamoto, Coherent zero-state and \(\pi \)-state in an exciton-polariton condensate array. Nature 450(7169), 529–532 (2007)

    Article  ADS  Google Scholar 

  27. N.Y. Kim, K. Kusudo, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, Exciton-polariton condensates near the Dirac point in a triangular lattice. New J. Phys. 15, 035032 (2013)

    Article  ADS  Google Scholar 

  28. T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D.D. Solnyshkov, G. Malpuech, E. Galopin, A. Lemaítre, J. Bloch, A. Amo, Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett 112(11), 116402 (2014)

    Google Scholar 

  29. K. Winkler, J. Fischer, A. Schade, M. Amthor, R. Dall, J. Geßler, M. Emmerling, E.A. Ostrovskaya, M. Kamp, C. Schneider, S. Höfling, A polariton condensate in a photonic crystal potential landscape. New J. Phys. 17, 023001 (2015)

    Article  ADS  Google Scholar 

  30. E.A. Cerda-Méndez, D. Sarkar, D.N. Krizhanovskii, S.S. Gavrilov, K. Biermann, M.S. Skolnick, P.V. Santos, Exciton-polariton gap solitons in two-dimensional lattices. Phys. Rev. Lett. 111, 146401 (2013)

    Article  ADS  Google Scholar 

  31. F. Baboux, L. Ge, T. Jacqmin, M. Biondi, E. Galopin, A. Lemaítre, L. Le Gratiet, I. Sagnes, S. Schmidt, H.E. Türeci, A. Amo, J. Bloch, Bosonic condensation and disorder-induced localization in a flat band. Phys. Rev. Lett. 116(6), 066402 (2016)

    Article  ADS  Google Scholar 

  32. M. Sun, I.G. Savenko, S. Flach, Y.G. Rubo, Excitation of localized condensates in the flat band of the exciton-polariton Lieb lattice. Phy. Rev. B 98(16), 161204 (2018)

    Google Scholar 

  33. T. Karzig, C.E. Bardyn, N.H. Lindner, G. Refael, Topological polaritons. Phys. Rev. X 5(3), 031001 (2015)

    Google Scholar 

  34. C.E. Bardyn, T. Karzig, G. Refael, T.C.H. Liew, Topological polaritons and excitons in garden-variety systems. Phys. Rev. B 91(16), 161413(R) (2015)

    Google Scholar 

  35. S. Klembt, T.H. Harder, O.A. Egorov, K. Winkler, R. Ge, M.A. Bandres, M. Emmerling, L. Worschech, T.C.H. Liew, M. Segev, C. Schneider, S. Höfling, Exciton-polariton topological insulator. Nature 562(7728), 552–556 (2018)

    Article  ADS  Google Scholar 

  36. S.I. Tsintzos, N.T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, P.G. Savvidis, A GaAs polariton light-emitting diode operating near room temperature. Nature 453(7193), 372–375 (2008)

    Article  ADS  Google Scholar 

  37. C. Schneider, A. Rahimi-Iman, N.Y. Kim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, S. Hoefling, An electrically pumped polariton laser. Nature 497, 348 (2013)

    Article  ADS  Google Scholar 

  38. C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Löffler, T. Kida, S. Höfling, A. Forchel, L. Grenouillet, J. Claudon, J.M. Gérard, Electrically driven high-Q quantum dot-micropillar cavities. Appl. Phys. Lett. 92(9), 091107 (2008)

    Article  ADS  Google Scholar 

  39. J.M. Gérard, D. Barrier, J.Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry Mieg, T. Rivera, Quantum boxes as active probes for photonic microstructures: The pillar microcavity case. Appl. Phys. Lett. 69, 449 (1996)

    Article  ADS  Google Scholar 

  40. S. Reitzenstein, A. Forchel, Quantum dot micropillars. J. Phys. D: Appl. Phys. 43(3), 033001 (2010)

    Article  ADS  Google Scholar 

  41. E. Wertz, L. Ferrier, D.D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A.V. Kavokin, P. Senellart, G. Malpuech, J. Bloch, Spontaneous formation and optical manipulation of extended polariton condensates. Nat. Phys. 6(11), 860–864 (2010)

    Article  Google Scholar 

  42. A.A. Maksimov, I.I. Tartakovskii, E.V. Filatov, S.V. Lobanov, N.A. Gippius, S.G. Tikhodeev, C. Schneider, M. Kamp, S. Maier, S. Höfling, V.D. Kulakovskii, Circularly polarized light emission from chiral spatially-structured planar semiconductor microcavities. Phys. Rev. B 89(4), 045316 (2014)

    Article  ADS  Google Scholar 

  43. M. Sugawara. Plasma Etching: Fundamentals and Applications (Oxford Science Publications, Oxford, 1998)

    Google Scholar 

  44. A. Löffler, J.P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, A. Forchel, Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions. Appl. Phys. Lett. 86, 111105 (2005)

    Article  ADS  Google Scholar 

  45. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S.H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, AlAs/GaAs micropillar cavities with quality factors exceeding 150.000. Appl. Phys. Lett. 90(25), 251109 (2007)

    Article  ADS  Google Scholar 

  46. S. Reitzenstein, N. Gregersen, C. Kistner, M. Strauss, C. Schneider, L. Pan, T.R. Nielsen, S. Höfling, J. Mørk, A. Forchel, Oscillatory variations in the Q factors of high quality micropillar cavities. Appl. Phys. Lett. 94(6), 061108 (2009)

    Article  ADS  Google Scholar 

  47. A.J. Bennett, R.B. Patel, A.J. Shields, K. Cooper, P. Atkinson, C.A. Nicoll, D.A. Ritchie, Indistinguishable photons from a diode. Appl. Phys. Lett. 92(19), 193503 (2008)

    Article  ADS  Google Scholar 

  48. A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, P. Senellart, Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography. Phys. Rev. Lett. 101(26), 267404 (2008)

    Article  ADS  Google Scholar 

  49. J.P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L.V. Keldysh, V.D. Kulakovskii, T.L. Reinecke, A. Forchel, Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432(7014), 197–200 (2004)

    Article  ADS  Google Scholar 

  50. Giovanna Panzarini and Lucio Claudio Andreani, Quantum theory of exciton polaritons in cylindrical semiconductor microcavities. Phys. Rev. B 60(24), 16799–16806 (1999)

    Article  Google Scholar 

  51. D. Bajoni, Polariton lasers. Hybrid light-matter lasers without inversion. J. Phys. D: Appl. Phys. 45(31), 313001 (2012)

    Article  Google Scholar 

  52. A. Rahimi-Iman, Nichtlineare Eekte in III/V Quantenlm-Mikroresonatoren: Von dynamischer Bose–Einstein-Kondensation hin zum elektrisch betriebenen Polariton-Laser (Cuvillier Verlag Göttingen, Göttingen, 2013)

    Google Scholar 

  53. D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, J. Bloch, Polariton light-emitting diode in a GaAs-based microcavity. Phys. Rev. B 77(11), 113303 (2008)

    Article  ADS  Google Scholar 

  54. A.A. Khalifa, A.P.D. Love, D.N. Krizhanovskii, M.S. Skolnick, J.S. Roberts, Electroluminescence emission from polariton states in GaAs-based semiconductor microcavities. Appl. Phys. Lett. 92(6), 061107 (2008)

    Article  ADS  Google Scholar 

  55. P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, J. Heo, Solid state electrically injected exciton-polariton laser. Phys. Rev. Lett. 110(20), 206403 (2013)

    Article  ADS  Google Scholar 

  56. P. Bhattacharya, T. Frost, S. Deshpande, M.Z. Baten, A. Hazari, A. Das, Room temperature electrically injected polariton laser. Phys. Rev. Lett. 112, 236802 (2014)

    Article  ADS  Google Scholar 

  57. K. Winkler, C. Schneider, J. Fischer, A. Rahimi-Iman, M. Amthor, A. Forchel, S. Reitzenstein, S. Höfling, M. Kamp, Electroluminescence from spatially confined exciton polaritons in a textured microcavity. Appl. Phys. Lett. 102, 041101 (2013)

    Article  ADS  Google Scholar 

  58. S. Brodbeck, J.-P. Jahn, A. Rahimi-Iman, J. Fischer, M. Amthor, S. Reitzenstein, M. Kamp, C. Schneider, S. Höfling, Room temperature polariton light emitting diode with integrated tunnel junction. Opt. Express 21(25), 31098–31104 (2013)

    Article  ADS  Google Scholar 

  59. D. Whittaker, T. Fisher, A. Afshar, M. Skolnick, P. Kinsler, J. Roberts, G. Hill, M. Pate, Vacuum rabi splitting in semiconductor microcavities with applied electric and magnetic fields. Il Nuovo Cimento D 17(11), 1781–1786 (1995)

    Article  ADS  Google Scholar 

  60. D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, J. Bloch, Optical bistability in a GaAs-based polariton diode. Phys. Rev. Lett. 101(26), 266402 (2008)

    Article  ADS  Google Scholar 

  61. M. Amthor, S. Weißenseel, J. Fischer, M. Kamp, C. Schneider, S. Höfling, Electro-optical switching between polariton and cavity lasing in an InGaAs quantum well microcavity. Opt. Express 22(25), 31146–31153 (2014)

    Article  ADS  Google Scholar 

  62. C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. Höfling, A. Forchel, Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems. Opt. Express 16, 15006–15012 (2008)

    Article  ADS  Google Scholar 

  63. H. Deng, G. Weihs, C. Santori, J. Bloch, Y. Yamamoto, Condensation of semiconductor microcavity exciton polaritons. Science 298(5591), 199–202 (2002)

    Article  ADS  Google Scholar 

  64. D. Sanvitto, S. Kéna-Cohen, The road towards polaritonic device. Nat. Mater. 15, 1061 (2016)

    Article  ADS  Google Scholar 

  65. C.F. Klingshirn, Semiconductor Optics (Springer, Berlin, 2012)

    Google Scholar 

  66. M. Litinskaya, P. Reineker, V.M. Agranovich, Fast polariton relaxation in strongly coupled organic microcavities. J. Lumin. 110(4), 364–372 (2004)

    Article  ADS  Google Scholar 

  67. D.M. Coles, P. Michetti, C. Clark, W.C. Tsoi, A.M. Adawi, J.S. Kim, D.G. Lidzey, Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities. Adv. Funct. Mater. 21(19), 3691–3696 (2011)

    Article  Google Scholar 

  68. L. Mazza, L. Fontanesi, G.C. La Rocca, Organic-based microcavities with vibronic progressions: Photoluminescence. Phys. Rev. B 80(23) (2009)

    Google Scholar 

  69. M. Richard, J. Kasprzak, R. Romestain, R. André, L.S. Dang, Spontaneous coherent phase transition of polaritons in CdTe microcavities. Phys. Rev. Lett. 94(18), 187401 (2005)

    Google Scholar 

  70. M. Richard, J. Kasprzak, R. André, R. Romestain, L.S. Dang, G. Malpuech, A. Kavokin, Experimental evidence for nonequilibrium Bose condensation of exciton polaritons. Phys. Rev. B 72(20), 201301 (2005)

    Google Scholar 

  71. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Bose-Einstein condensation of exciton polaritons. Nature 443(7110), 409–414 (2006)

    Article  ADS  Google Scholar 

  72. R. André, D. Heger, L.S. Dang, Y.M. D’Aubigné, Spectroscopy of polaritons in CdTe-based microcavities. J. Cryst. Growth 184–185, 758–762 (1998)

    Article  ADS  Google Scholar 

  73. F. Boeuf, R. André, R. Romestain, L.S. Dang, E. Péronne, J.F. Lampin, D. Hulin, A. Alexandrou, Evidence of polariton stimulation in semiconductor microcavities. Phys. Rev. B 62(4), R2279–R2282 (2000)

    Article  ADS  Google Scholar 

  74. R. André, F. Boeuf, D. Heger, L.S. Dang, R. Romestain, J. Bleuse, M. Müller, Cavity-polariton effects in II-VI microcavities. Acta Phys. Pol. A 96(5), 511–524 (1999)

    Article  Google Scholar 

  75. S. Christopoulos, G.B.H. von Högersthal, A.J.D. Grundy, P.G. Lagoudakis, A.V. Kavokin, J.J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98(12), 126405 (2007)

    Google Scholar 

  76. G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity. Appl. Phys. Lett. 93(5), 051102 (2008)

    Article  ADS  Google Scholar 

  77. A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, P. Bhattacharya, Room temperature ultralow threshold GaN nanowire polariton laser. Phys. Rev. Lett. 107(6), 066405 (2011)

    Google Scholar 

  78. K.S. Daskalakis, P.S. Eldridge, G. Christmann, E. Trichas, R. Murray, E. Iliopoulos, E. Monroy, N.T. Pelekanos, J.J. Baumberg, P.G. Savvidis, All-dielectric GaN microcavity: Strong coupling and lasing at room temperature. Appl. Phys. Lett. 102(10), 101113 (2013)

    Article  ADS  Google Scholar 

  79. R. Butté, G. Christmann, E. Feltin, J.F. Carlin, M. Mosca, M. Ilegems, N. Grandjean, Room-temperature polariton luminescence from a bulk GaN microcavity. Phys. Rev. B 73(3), 033315 (2006)

    Article  ADS  Google Scholar 

  80. M. Leroux, N. Grandjean, M. Laügt, J. Massies, B. Gil, P. Lefebvre, Quantum confined Stark effect due to built-in internal polarization fields in (Al, Ga)N/GaN quantum wells. Phys. Rev. B 58(20), R13371–R13374 (1998)

    Article  ADS  Google Scholar 

  81. G. Christmann, R. Butté, E. Feltin, A. Mouti, P.A. Stadelmann, A. Castiglia, J.F. Carlin, N. Grandjean, Large vacuum Rabi splitting in a multiple quantum well GaN-based microcavity in the strong-coupling regime. Phys. Rev. B 77(8), 085310 (2008)

    Google Scholar 

  82. C. Sturm, H. Hilmer, R. Schmidt-Grund, M. Grundmann, Exciton-polaritons in a ZnO-based microcavity: polarization dependence and nonlinear occupation. New J. Phys. 13(3), 033014 (2011)

    Article  ADS  Google Scholar 

  83. L. Sun, S. Sun, H. Dong, W. Xie, M. Richard, L. Zhou, L.S. Dang, X. Shen, Z. Chen, Room temperature one-dimensional polariton condensate in a ZnO microwire. arXiv:1007.4686v1 (unpublished)

  84. L. Tien-Chang, Y.-Y. Lai, Y.-P. Lan, S.-W. Huang, J.-R. Chen, W. Yung-Chi, W.-F. Hsieh, H. Deng, Room temperature polariton lasing vs photon lasing in a ZnO-based hybrid microcavity. Opt. Express 20(5), 5530 (2012)

    Article  ADS  Google Scholar 

  85. F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, G. Malpuech, From excitonic to photonic polariton condensate in a ZnO-based microcavity. Phys. Rev. Lett. 110(19), 196406 (2013)

    Google Scholar 

  86. W. Xie, H. Dong, S. Zhang, L. Sun, W. Zhou, Y. Ling, L. Jian, X. Shen, Z. Chen, Room-temperature polariton parametric scattering driven by a one-dimensional polariton condensate. Phys. Rev. Lett. 108(16), 166401 (2012)

    Article  ADS  Google Scholar 

  87. Q. Duan, X. Dan, W. Liu, L. Jian, L. Zhang, J. Wang, Y. Wang, G. Jie, H. Tao, W. Xie, X. Shen, Z. Chen, Polariton lasing of quasi-whispering gallery modes in a ZnO microwire. Appl. Phys. Lett. 103(2), 022103 (2013)

    Article  ADS  Google Scholar 

  88. T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Zúñiga-Pérez, M. Leroux, F. Semond, S. Bouchoule, Polariton lasing in a hybrid bulk ZnO microcavity. Appl. Phys. Lett. 99(16), 161104 (2011)

    Article  ADS  Google Scholar 

  89. H. Franke, C. Sturm, R. Schmidt-Grund, G. Wagner, M. Grundmann, Ballistic propagation of exciton-polariton condensates in a ZnO-based microcavity. New J. Phys. 14, 013037 (2012)

    Article  ADS  Google Scholar 

  90. C. Sturm, H. Hilmer, R. Schmidt-Grund, M. Grundmann, Observation of strong exciton-photon coupling at temperatures up to 410 k. New J. Phys. 11(7), 073044 (2009)

    Article  ADS  Google Scholar 

  91. H. Hilmer, C. Sturm, R. Schmidt-Grund, B. Rheinländer, M. Grundmann, Observation of strong light-matter coupling by spectroscopic ellipsometry. Superlattices Microstruct. 47(1), 19–23 (2010)

    Article  ADS  Google Scholar 

  92. M. Litinskaya, Exciton polariton kinematic interaction in crystalline organic microcavities. Phys. Rev. B 77(15), 155325 (2008)

    Article  ADS  Google Scholar 

  93. K.S. Daskalakis, S.A. Maier, R. Murray, S. Kéna-Cohen, Nonlinear interactions in an organic polariton condensate. Nat. Mater. 13(3), 271–278 (2014)

    Article  ADS  Google Scholar 

  94. S. Kena-Cohen, S.R. Forrest, Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Phot. 4(6), 371–375 (2010)

    Article  Google Scholar 

  95. D.G. Lidzey, D.D.C. Bradley, M.S. Skolnick, T. Virgili, S. Walker, D.M. Whittaker, Strong exciton-photon coupling in an organic semiconductor microcavity. Nature 395(6697), 53–55 (1998)

    Article  ADS  Google Scholar 

  96. S. Kéna-Cohen, M. Davanço, S.R. Forrest, Strong exciton-photon coupling in an organic single crystal microcavity. Phys. Rev. Lett. 101(11), 116401 (2008)

    Google Scholar 

  97. K.S. Daskalakis, S.A. Maier, S. Kéna-Cohen, Spatial coherence and stability in a disordered organic polariton condensate. Phys. Rev. Lett. 115, 035301 (2015)

    Article  ADS  Google Scholar 

  98. J.D. Plumhof, T. Stöferle, L. Mai, U. Scherf, R.F. Mahrt, Room-temperature Bose–Einstein condensation of cavity exciton-polaritons in a polymer. Nat. Mater. 13, 247 (2014). Published Online Dec 2013

    Article  ADS  Google Scholar 

  99. Q. Zhang, S.T. Ha, X. Liu, T.C. Sum, Q. Xiong, Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 14(10), 5995–6001 (2014)

    Article  ADS  Google Scholar 

  100. Q. Zhang, R. Su, X. Liu, J. Xing, T.C. Sum, Q. Xiong, High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater. 26(34), 6238–6245 (2016)

    Article  Google Scholar 

  101. T. Fujita, Y. Sato, T. Kuitani, T. Ishihara, Tunable polariton absorption of distributed feedback microcavities at room temperature. Phys. Rev. B 57(19), 12428–12434 (1998)

    Article  ADS  Google Scholar 

  102. G. Lanty, A. Bréhier, R. Parashkov, J.S. Lauret, E. Deleporte, Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds. New J. Phys. 10(6), 065007 (2008)

    Article  ADS  Google Scholar 

  103. R. Su, C. Diederichs, J. Wang, T.C.H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, Q. Xiong, Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett. 17(6), 3982–3988 (2017)

    Article  ADS  Google Scholar 

  104. K. F. Mak and J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10(4), 216–226 (2016)

    Article  ADS  Google Scholar 

  105. S. Dufferwiel, S. Schwarz, F. Withers, A.A.P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D.D. Solnyshkov, G. Malpuech, K.S. Novoselov, J.M. Smith, M.S. Skolnick, D.N. Krizhanovskii, A.I. Tartakovskii, Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat. Commun. 6, 8579 (2015)

    Article  ADS  Google Scholar 

  106. Y. Yu, Y. Yu, C. Xu, Y.Q. Cai, L. Su, Y. Zhang, Y.W. Zhang, K. Gundogdu, L. Cao, Engineering substrate interactions for high luminescence efficiency of transition-metal dichalcogenide monolayers. Adv. Funct. Mater. 26(26), 4733–4739 (2016)

    Article  Google Scholar 

  107. A.V. Stier, N.P. Wilson, G. Clark, X. Xiaodong, S.A. Crooker, Probing the influence of dielectric environment on excitons in monolayer WSe2: Insight from high magnetic fields. Nano Lett. 16(11), 7054–7060 (2016)

    Article  ADS  Google Scholar 

  108. S. Lippert, L.M. Schneider, D. Renaud, K.N. Kang, O. Ajayi, J. Kuhnert, M.-U. Halbich, O.M. Abdulmunem, X. Lin, K. Hassoon, S. Edalati-Boostan, Y.D. Kim, W. Heimbrodt, E.-H. Yang, J.C. Hone, A. Rahimi-Iman, Influence of the substrate material on the optical properties of tungsten diselenide monolayers. 2D Mater. 4(2), 025045 (2017)

    Article  Google Scholar 

  109. L.M. Schneider, S. Lippert, J. Kuhnert, O. Ajayi, D. Renaud, S. Firoozabadi, Q. Ngo, R. Guo, Y.D. Kim, W. Heimbrodt, J.C. Hone, A. Rahimi-Iman, The influence of the environment on monolayer tungsten diselenide photoluminescence. Nano-Struct. Nano-Objects 15, 84–97 (2018)

    Article  Google Scholar 

  110. A.K. Geim, I.V. Grigorieva, Van der waals heterostructures. Nature 499, 419 (2013)

    Article  Google Scholar 

  111. K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, 2d materials and van der waals heterostructures. Science 353(6298), aac9439 (2016)

    Article  Google Scholar 

  112. K. Liu, L. Zhang, T. Cao, C. Jin, D. Qiu, Q. Zhou, A. Zettl, P. Yang, S.G. Louie, F. Wang, Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5(1), 4966 (2014)

    Article  ADS  Google Scholar 

  113. H. Zhu, J. Wang, Z. Gong, Y.D. Kim, J. Hone, X.-Y. Zhu, Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der waals heterojunctions. Nano Lett. 17(6), 3591–3598 (2017)

    Article  ADS  Google Scholar 

  114. Y. Cao, V. Fatemi, A. Demir, S. Fang, S.L. Tomarken, J.Y. Luo, J.D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R.C. Ashoori, P. Jarillo-Herrero, Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80 (2018)

    Article  ADS  Google Scholar 

  115. L.M. Schneider, J. Kuhnert, S. Schmitt, W. Heimbrodt, U. Huttner, L. Meckbach, T. Stroucken, S.W. Koch, S. Fu, X. Wang, K. Kang, E.-H. Yang, A. Rahimi-Iman, Spin-layer and spin-valley locking in CVD-grown AA’- and AB-stacked tungsten-disulfide bilayers. J. Phys. Chem. C 123(35), 21813–21821 (2019)

    Article  Google Scholar 

  116. M. Selig, G. Berghäuser, A. Raja, P. Nagler, C. Schüller, T.F. Heinz, T. Korn, A. Chernikov, E. Malic, A. Knorr, Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides. Nat. Commun. 7(1), 13279 (2016)

    Article  ADS  Google Scholar 

  117. O.A. Ajayi, J.V. Ardelean, G.D. Shepard, J. Wang, A. Antony, T. Taniguchi, K. Watanabe, T.F. Heinz, S. Strauf, X.Y. Zhu, J.C. Hone, Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers. 2D Mater. 4(3), 031011 (2017)

    Article  Google Scholar 

  118. F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, B. Urbaszek, Excitonic linewidth approaching the homogeneous limit in MoS\(_2\)-based van der Waals heterostructures. Phys. Rev. X 7(2), 021026 (2017)

    Google Scholar 

  119. J. Wierzbowski, J. Klein, F. Sigger, C. Straubinger, M. Kremser, T. Taniguchi, K. Watanabe, U. Wurstbauer, A.W. Holleitner, M. Kaniber, K. Müller, J.J. Finley, Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit. Sci. Rep. 7(1), 12383 (2017)

    Article  ADS  Google Scholar 

  120. D. Edelberg, D. Rhodes, A. Kerelsky, B. Kim, J. Wang, A. Zangiabadi, C. Kim, A. Abhinandan, J. Ardelean, M. Scully, D. Scullion, L. Embon, I. Zhang, R. Zu, E.J.G. Santos, L. Balicas, C. Marianetti, K. Barmak, X.Y. Zhu, J. Hone, A.N. Pasupathy, Hundredfold enhancement of light emission via defect control in monolayer transition-metal dichalcogenides (2018), arXiv:1805.00127

  121. G. Wang, A. Chernikov, M.M. Glazov, T.F. Heinz, X. Marie, T. Amand, B. Urbaszek, Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90(2), 21001 (2018)

    Article  MathSciNet  Google Scholar 

  122. M.M. Fogler, L.V. Butov, K.S. Novoselov, High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014)

    Article  ADS  Google Scholar 

  123. X. Liu, T. Galfsky, Z. Sun, F. Xia, E.C. Lin, Y.H. Lee, S. Kéna-Cohen, V.M. Menon, Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photon. 9(1), 30–34 (2014)

    Article  ADS  Google Scholar 

  124. L.C. Flatten, Z. He, D.M. Coles, A.A.P. Trichet, A.W. Powell, R.A. Taylor, J.H. Warner, J.M. Smith, Room-temperature exciton-polaritons with two-dimensional WS2. Sci. Rep. 6, 33134 (2016)

    Google Scholar 

  125. N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A.V. Nalitov, M. Klaas, C.P. Dietrich, A.V. Kavokin, S. Höfling, C. Schneider, Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nat. Commun. 7, 13328 (2016)

    Article  ADS  Google Scholar 

  126. S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J.A Hutchison, C. Genet, P. Samorì, T.W. Ebbesen, Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature. Nano Lett. 16(7), 4368–4374 (2016)

    Article  ADS  Google Scholar 

  127. Y.J. Chen, J.D. Cain, T.K. Stanev, V.P. Dravid, N.P. Stern, Valley-polarized exciton-polaritons in a monolayer semiconductor. Nat. Photon. 11(7), 431–435 (2017)

    Article  ADS  Google Scholar 

  128. L.C. Flatten, D.M. Coles, Z. He, D.G. Lidzey, R.A. Taylor, J.H. Warner, J.M. Smith, Electrically tunable organic-inorganic hybrid polaritons with monolayer WS2. Nat. Commun. 8, 14097 (2017)

    Article  ADS  Google Scholar 

  129. M. Slootsky, X. Liu, V.M. Menon, S.R. Forrest, Room temperature Frenkel-Wannier-Mott hybridization of degenerate excitons in a strongly coupled microcavity. Phys. Rev. Lett. 112(7), 07640 (2014)

    Google Scholar 

  130. K.F. Mak, D. Xiao, J. Shan, Light–valley interactions in 2D semiconductors. Nat. Photon. 12(8), 451–460 (2018)

    Article  ADS  Google Scholar 

  131. S. Dufferwiel, T.P. Lyons, D.D. Solnyshkov, A.A.P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J.M. Smith, K.S. Novoselov, M.S. Skolnick, D.N. Krizhanovskii, A.I. Tartakovskii, Valley-addressable polaritons in atomically thin semiconductors. Nat. Photon. 11(8), 497–501 (2017)

    Article  Google Scholar 

  132. Z. Sun, G. Jie, A. Ghazaryan, Z. Shotan, C.R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. Kéna-Cohen, V.M. Menon, Optical control of roomerature valley polaritons. Nat. Photon. 11(8), 491–496 (2017)

    Article  Google Scholar 

  133. N. Lundt, C. Schneider, P. Nagler, A. Nalitov, S. Klembt, M. Wurdack, S. Stoll, T.H. Harder, S. Betzold, V. Baumann, A.V. Kavokin, C. Schüller, T. Korn, S. Höfling, Valley polarized relaxation and upconversion luminescence from Tamm-plasmon trion-polaritons with a MoSe2 monolayer. 2D Mater. 4(2), 025096 (2017)

    Article  Google Scholar 

  134. N. Lundt, S. Stoll, P. Nagler, A. Nalitov, S. Klembt, S. Betzold, J. Goddard, E. Frieling, A.V. Kavokin, C. Schüller, T. Korn, S. Höfling, C. Schneider, Observation of macroscopic valley-polarized monolayer exciton-polaritons at room temperature. Phys. Rev. B 96(24), 241403 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Rahimi-Iman .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahimi-Iman, A. (2020). Technological Realization of Polariton Systems. In: Polariton Physics. Springer Series in Optical Sciences, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-030-39333-5_6

Download citation

Publish with us

Policies and ethics