Skip to main content

Molecular Tools and Techniques for Understanding the Microbial Community Dynamics of Vermicomposting

  • Chapter
  • First Online:
Biology of Composts

Part of the book series: Soil Biology ((SOILBIOL,volume 58))

  • 897 Accesses

Abstract

Earthworms have the remarkable capability of decomposing the organic matter through a biochemical oxidative process popularly called as vermicomposting. As this process significantly alters the physical and biochemical attributes of organic matter through solubilization of minerals, the resultant product called vermicompost is highly rich in nutrients that are very useful for improving the soil fertility. The organic matter decomposition is mainly carried out by microorganisms, while the earthworms provide a milieu favorable for activity of microorganisms, through ingestion and churning of the organic matter. Hence, investigation on the pattern of changes taking place in the community of microorganisms during vermicomposting is very important as it has a direct bearing on vermicompost quality. With the advancement in tools and techniques for scientific research on vermicomposting, our understanding about the entire process has tremendously increased over past few decades. Of particular relevance, here are the molecular tools and techniques that have greatly enhanced our knowledge in understanding the microbial community dynamics of vermicomposting. This chapter provides an overview of molecular tools and techniques being used for unravelling the mechanisms of interactions of microorganisms with various biotic and abiotic factors under a unique micro-ecosystem where the earthworms are crucial drivers of the process owing to their active role in the stimulation of microbial populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abrams ES, Murdaugh SE, Lerman LS (1990) Comprehensive detection of single base changes in human genomic DNA using denaturing gradient gel-electrophoresis and a GC clamp. Genomics 7:463–475

    Article  CAS  PubMed  Google Scholar 

  • Agrawal PK, Agrawal S, Shrivastava R (2015) Modern molecular approaches for analyzing microbial diversity from mushroom compost ecosystem. 3 Biotech 5:853–866

    Article  PubMed  PubMed Central  Google Scholar 

  • Aira M, Monroy F, Domínguez J (2007) Microbial biomass governs enzyme activity decay during aging of worm-worked substrates through vermicomposting. J Environ Qual 36:448–452

    Article  CAS  PubMed  Google Scholar 

  • Aira M, Pérez-Losada M, Domínguez J (2018) Diversity, structure and sources of bacterial communities in earthworm cocoons. Sci Rep 8:6632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alves A, Phillips AJL, Henriques I, Correia A (2005) Evaluation of amplified ribosomal DNA restriction analysis as a method for the identification of Botryosphaeria species. FEMS Microbiol Lett 245:221–229

    Article  CAS  PubMed  Google Scholar 

  • Anonymous (2014) Illumina. HiSeq X Ten Series of Sequencing Systems. www.illumina.com/documents/products/datasheets/datasheet-hiseq-x-ten.pdf. Accessed 25 May 2019

  • Anonymous (2018) New Software, Polymerase for Sequel System Boost Throughput and Affordability. https://www.pacb.com/blog/new-software-polymerase-sequel-system-boost-throughput-affordability.

  • Anonymous (2019) Latest PacBio Sequencing Advancements Including Preview of Sequel II System to be Featured at Annual AGBT Conference. https://www.globenewswire.com/news-release/2019/02/26/1742290/0/en.

  • Bardakci F (2001) Random amplified polymorphic DNA (RAPD) markers. Turk J Biol 25:185–196

    CAS  Google Scholar 

  • Bartlett JMS, Stirling D (2003) A short history of the polymerase chain reaction. PCR protocols, methods in molecular biology 226 (2nd ed), pp 3–6

    Google Scholar 

  • Blaya J, Marhuenda FC, Pascual JA, Ros M (2016) Microbiota characterization of compost using omics approaches opens new perspectives for Phytophthora root rot control. PLoS One 11:e0158048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blomström AL, Lalander C, Komakech AJ, Vinnerås B, Boqvist S (2016) A metagenomic analysis displays the diverse microbial community of a vermicomposting system in Uganda. Infect Ecol Epidemiol 6:32453

    PubMed  Google Scholar 

  • Borneman J, Triplett EW (1997) Molecular microbial diversity in soils from Eastern Amazonia: evidence for unusual microorganisms and population shifts associated with deforestation. Appl Environ Microbiol 63:2647–2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks JP, Edwards DJ, Harwich MD, Rivera MC, Fettweis JM, Serrano MG, Reris RA, Sheth NU, Huang B (2015) The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies. BMC Microbiol 15:66. https://doi.org/10.1186/s12866-015-0351-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Buermans HPJ, den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta Mol basis Dis 1842:1932–1941

    Article  CAS  Google Scholar 

  • Bumgarner R (2013) Overview of DNA microarrays: types, applications, and their future. Current protocols in molecular biology, Unit–221. https://doi.org/10.1002/0471142727.mb2201s101

  • Cai L, Gong X, Sun X, Li S, Yu X (2018) Comparison of chemical and microbiological changes during the aerobic composting and vermicomposting of green waste. PLoS One 13:e0207494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chan K-G, Yin W-F, Lim YL (2014) Complete genome sequence of Pseudomonas aeruginosa strain YL84, a quorum-sensing strain isolated from compost. Genome Announc 2:e00246–e00214

    PubMed  PubMed Central  Google Scholar 

  • Chauhan PS, Shagol CC, Yim W, Tipayno SC, Kim CG, Sa T (2011) Use of terminal restriction length polymorphism (T-RFLP) analysis to evaluate uncultivable microbial community structure of soil. Korean J Soil Sci Fert 44:127–145

    Article  CAS  Google Scholar 

  • Cherif H, Ouzari H, Marzorati M, Brusetti L, Jedidi N, Hassen A, Daffonchio D (2008) Bacterial community diversity assessment in municipal solid waste compost amended soil using DGGE and ARISA fingerprinting methods. World J Microbiol Biotechnol 24:1159. https://doi.org/10.1007/s11274-007-9588-z

    Article  Google Scholar 

  • Collins FS, Morgan M, Patrinos A (2003) The human genome project: lessons from large-scale biology. Science 300:286–290

    Article  CAS  PubMed  Google Scholar 

  • Danon M, Franke-Whittle IH, Insam H, Chen Y, Hadar Y (2008) Molecular analysis of bacterial community succession during prolonged compost curing. FEMS Microbiol Ecol 65:133–144

    Article  CAS  PubMed  Google Scholar 

  • Darwin C (1881) The formation of vegetable mould, through the action of worms, with observations on their habits. John Murray, London

    Book  Google Scholar 

  • Domínguez J, Edwards CA (2004) Vermicomposting organic wastes: a review. In: Shakir Hana SH, Mikhail WZA (eds) Soil zoology for sustainable development in the 21st century. Self-Publisher, Cairo, pp 369–395

    Google Scholar 

  • Donohoe K (2018) Chemical and microbial characteristics of vermicompost leachate and their effect on plant growth. PhD Thesis, University of Sydney

    Google Scholar 

  • Edel-Hermann V, Dreumont C, Pérez-Piqueres A, Steinberg C (2004) Terminal restriction fragment length polymorphism analysis of ribosomal RNA genes to assess changes in fungal community structure in soils. FEMS Microbiol Ecol 47:397–404

    Article  CAS  PubMed  Google Scholar 

  • Fischer SG, Lerman LS (1979) Length independent separation of DNA restriction fragments in 2-dimensional gel electrophoresis. Cell 16:191–200

    Article  CAS  PubMed  Google Scholar 

  • Fisher MM, Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65:4630–4636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fracchia L, Dohrmann AB, Martinotti MG, Tebbe CC (2006) Bacterial diversity in a finished compost and vermicompost: differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes. Appl Microbiol Biotechnol 71:942–952

    Article  CAS  PubMed  Google Scholar 

  • Franke-Whittle IH, Knapp BA, Fuchs J, Kaufmann R, Insam H (2009) Application of COMPOCHIP microarray to investigate the bacterial communities of different composts. Microbial Ecol 57:510–521

    Article  CAS  Google Scholar 

  • Franke-Whittle IH, Confalonieri A, Insam H, Schlegelmilch M, Korner I (2014) Changes in the microbial communities during co-composting of digestates. Waste Manag 34:632–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franke-Whittle IH, Juárez M, Insam F-D, Schweizer H, Naef S, Topp A et al (2018) Performance evaluation of locally available composts to reduce replant disease in apple orchards of Central Europe. Renewable Agric Food Syst 34:543. https://doi.org/10.1017/S1742170518000091

    Article  Google Scholar 

  • Gafan GP, Spratt DA (2005) Denaturing gradient gel electrophoresis gel expansion (DGGEGE)-an attempt to resolve the limitations of co-migration in the DGGE of complex polymicrobial communities. FEMS Microbiol Lett 253:303–307

    Article  CAS  PubMed  Google Scholar 

  • Galitskaya P, Biktasheva L, Saveliev A, Grigoryeva T, Boulygina E, Selivanovskaya S (2017) Fungal and bacterial successions in the process of co-composting of organic wastes as revealed by 454 pyrosequencing. PLoS One 12:e0186051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gómez-Brandón M, Aira M, Lores M, Domínguez J (2011) Changes in microbial community structure and function during vermicomposting of pig slurry. Bioresour Technol 102:4171–4178

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Brandón M, Lores M, Domínguez J (2012) Species-specific effects of Epigeic earthworms on microbial community structure during first stages of decomposition of organic matter. PLoS One 7:e31895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gopal M, Bhute SS, Gupta A, Prabhu SR, Thomas GV, Whitman WB, Jangid K (2017) Changes in structure and function of bacterial communities during coconut leaf vermicomposting. Antonie Van Leeuwenhoek 110:1339–1355

    Article  CAS  PubMed  Google Scholar 

  • Greenwood M (2018) What is pyrosequencing?. News-Medical. https://www.news-medical.net/life-sciences/What-is-Pyrosequencing.aspx.

  • Grunstein M, Hogness DS (1975) Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci U S A 72:3961–3965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollmer M (2013) Roche to close 454 Life Sciences as it reduces gene sequencing focus. Fierce Biotech. https://www.fiercebiotech.com/medical-devices/roche-to-close-454-life-sciences-as-it-reduces-gene-sequencing-focus. Accessed 25 May 2019

  • Huang K, Li F, Wei Y, Chen X, Fu X (2013) Changes of bacterial and fungal community compositions during vermicomposting of vegetable wastes by Eisenia foetida. Bioresour Technol 150:235–241

    Article  CAS  PubMed  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Proc Natl Acad Sci U S A 93:13770–13773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller M, Zengler K (2004) Tapping into microbial diversity. Nat Rev Microbiol 2:141–150

    Article  CAS  PubMed  Google Scholar 

  • Khan MH, Meghvansi MK, Gupta R, Chaudhary KK, Prasad K, Siddiqui S, Veer V, Varma A (2015) Combining application of vermiwash and arbuscular mycorrhizal fungi for effective plant disease suppression. In: Meghvansi MK, Varma A (eds) Organic amendments and soil suppressiveness, Soil Biology, vol 46. Springer International Publishing, Switzerland, pp 479–493

    Google Scholar 

  • Kisand V, Wikner J (2003) Limited resolution of 16S rDNA DGGE caused by melting properties and closely related DNA sequences. J Microbiol Methods 54:183–191

    Article  CAS  PubMed  Google Scholar 

  • Kolbe AR, Aira M, Gómez-Brandón, Pérez-Losada M, Domínguez J (2019) Bacterial succession and functional diversity during vermicomposting of the white grape marc Vitis vinifera v. Albariño. Sci Rep 9:7472.doi:https://doi.org/10.1038/s41598-019-43907-y

  • Konstantinos KV, Panagiotis P, Antonios VT, Agelos P, Argiris NV (2008) PCR–SSCP: a method for the molecular analysis of genetic diseases. Mol Biotechnol 38:155–163

    Article  CAS  PubMed  Google Scholar 

  • Kulski JK (2016) Next-generation sequencing — an overview of the history, tools, and “Omic” applications. In: Kulski JK (ed) Next generation sequencing advances, applications and challenges. IntechOpen Limited, London, pp 1–60

    Chapter  Google Scholar 

  • Lahens NF, Ricciotti E, Smirnova O, Toorens E, Kim EJ, Baruzzo G, Hayer KE, Ganguly T, Schug J, Grant GR (2017) A comparison of Illumina and Ion Torrent sequencing platforms in the context of differential gene expression. BMC Genomics 18:602. https://doi.org/10.1186/s12864-017-4011-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laver T, Harrison J, O’Neill PA, Moore K, Farbos A, Paszkiewicz K, Studholme DJ (2015) Assessing the performance of the Oxford Nanopore technologies MinION. Biomol Detect Quantif 3:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Bayon R-C, Bullinger-Weber G, Schomburg A, Turberg P, Schlaepfer R, Guenat C (2017) Earthworms as ecosystem engineers: a review. In: Horton CG (ed) Earthworms: types, roles and research. Nova Science Publishers, New York, pp 129–177

    Google Scholar 

  • Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299(5607):682–686

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Marsh T, Cheng H, Forney L (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Wang C, Wang F, Xie Y (2018) Vermicompost and humic fertilizer improve coastal saline soil by regulating soil aggregates and the bacterial community. Arch Agron Soil Sci 65:281–293

    Article  CAS  Google Scholar 

  • Lores M, Gómez-Brandón M, Pérez-Díaz D, Domínguez J (2006) Using FAME profiles for the characterization of animal wastes and vermicomposts. Soil Biol Biochem 38:2993–2996

    Article  CAS  Google Scholar 

  • Lv B, Xing M, Yang J, Zhang L (2015) Pyrosequencing reveals bacterial community differences in composting and vermicomposting on the stabilization of mixed sewage sludge and cattle dung. Appl Microbiol Biotechnol 99:10703–10712

    Article  CAS  PubMed  Google Scholar 

  • Malik M, Kain J, Pettigrew C, Ogram A (1994) Purification and molecular analysis of microbial DNA from compost. J Microbiol Methods 20:183–196

    Article  CAS  Google Scholar 

  • Marsh S (2007) Pyrosequencing applications. In: Marsh S (ed) Pyrosequencing protocols, methods in molecular biology. Humana, Totowa, NJ, pp 15–24

    Google Scholar 

  • Marx V (2015) Nanopores: a sequencer in your backpack. Nat Methods 12(11):1015–1018

    Article  CAS  PubMed  Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci U S A 74:560–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meghvansi MK (2011) Contribution of Earthworm bioturbation to soil suppressiveness. DRDO Science Spectrum, DESIDOC, Defence R & D Organisation, New Delhi, p 167–172

    Google Scholar 

  • Meghvansi MK, Veer V (2014) Vermibiotechnology for solid waste management. Kashi Block Industry (Press), Tezpur, India

    Google Scholar 

  • Meghvansi MK, Singh L, Srivastava RB, Varma A (2011) Assessing the role of earthworms in biocontrol of soilborne plant fungal diseases. In: Karaca A (ed) Biology of earthworms, Soil Biology, vol 24. Springer, Berlin, Heidelberg, pp 173–190

    Chapter  Google Scholar 

  • Meghvansi MK, Khan MH, Gupta R, Chaudhary KK, Siddiqui S, Veer V (2015) Vermibiotechnology: relevance, challenges and future prospects for India. South Asian J Exp Biol 5:222–228

    CAS  Google Scholar 

  • Meghvansi MK, Khan MH, Gupta R, Chaudhary KK, Veer V (2016) Comparative evaluation of epigeic earthworm species suggests better nutrient mineralization efficiency of vegetable market solid waste by Eisenia fetida. South Asian J Exp Biol 6:234–240

    CAS  Google Scholar 

  • Mickan BS, Abbott LK, Fan J, Har MM, Siddique KHM, Solaiman ZM, Jenkins SN (2018) Application of compost and clay under water-stressed conditions influences functional diversity of rhizosphere bacteria. Biol Fertil Soils 54:55–70

    Article  Google Scholar 

  • Minnich J (1977) The earthworm book. Rodale Press, Emmaus, PA

    Google Scholar 

  • Mülhardt C, Beese EW (2007) DNA Analysis. Molecular biology and genomics. Academic, Cambridge, pp 151–168

    Book  Google Scholar 

  • Muralidharan K, Wakeland EK (1993) Concentration of primer and template qualitatively affects products in random-amplified polymorphic DNA PCR. BioTechniques 14:362–364

    CAS  PubMed  Google Scholar 

  • Muyzer G (1999) Genetic fingerprinting of microbial communities: present status and future perspective. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Proceedings of the 8th International Symposium on Microbial Ecology, Atlantic Canada Society for Microbial Ecology, Halifax, NovaScotia, pp 1–10

    Google Scholar 

  • Muyzer G, Teske A, Wirsen CO, Jannasch HW (1995) Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164:165–172

    Article  CAS  PubMed  Google Scholar 

  • Ntougias S, Zerva kis GI, Kavroulakis N, Ehaliotis C, Papadopoulou KK (2004) Bacterial diversity in spent mushroom compost assessed by amplified rDNA restriction analysis and sequencing of cultivated isolates. Syst Appl Microbiol 27:746–754

    Article  CAS  PubMed  Google Scholar 

  • Ojha RB, Devkota D (2014) Earthworms: ‘Soil and ecosystem Engineers’—a review. World J Agric Res 2:257–260

    Article  Google Scholar 

  • Orita M, Suzuki Y, Sekiya T, Kaayashi K (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5:874–879

    Article  CAS  PubMed  Google Scholar 

  • Partanen P, Hultman J, Paulin L, Auvinen P, Romantschuk M (2010) Bacterial diversity at different stages of the composting process. BMC Microbiol 10:94. https://doi.org/10.1186/1471-2180-10-94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parthasarathi K, Ranganathan LS (1998) Pressmud vermicast are hot spots of fungi and bacteria. Ecol Environ Cons 4:81–86

    CAS  Google Scholar 

  • Pathma J, Sakthivel N (2012) Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springerplus 1:26. https://doi.org/10.1186/2193-1801-1-26

    Article  PubMed  PubMed Central  Google Scholar 

  • Pennisi E (2010) Semiconductors inspire new sequencing technologies. Science 327(5970):1190. https://doi.org/10.1126/science.327.5970.1190

    Article  CAS  PubMed  Google Scholar 

  • Pérez-de-Mora A, Burgos P, Madejón E, Cabrera F, Jaeckel P, Schloter M (2006) Microbial community structure and function in a soil contaminated by heavy metals: effects of plant growth and different amendments. Soil Biol Biochem 38:327–341

    Article  CAS  Google Scholar 

  • Pizl V, Novakova A (2003) Interactions between microfungi and Eisenia andrei (Oligochaeta) during cattle manure vermicomposting. Pedobiologia 47:895–899

    Google Scholar 

  • Polz MF, Cavanaugh CM (1998) Bias in template-to-product ratios in multi-template PCR. Appl Environ Microbiol 64:3724–3730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi G, Sani RK (2011) Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In: Ahmad I (ed) Microbes and microbial technology: agricultural and environmental applications. Springer Nature, Singapore, pp 29–57

    Chapter  Google Scholar 

  • Rettedal EA, Clay S, Brozel VS (2010) GC-clamp primer batches yield 16S rRNA gene amplicon pools with variable GC clamps, affecting denaturing gradient gel electrophoresis profiles. FEMS Microbial Lett 312:55–62

    Article  CAS  Google Scholar 

  • Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13:278–289

    Article  PubMed  PubMed Central  Google Scholar 

  • Salipante SJ, Kawashima T, Rosenthal C, Hoogestraat DR, Cummings LA, Sengupta DJ et al (2014) Performance comparison of illumina and ion torrent next generation sequencing platforms for 16S rRNA-based bacterial community profiling. Appl Environ Microbiol 80:7583–7591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanger F (1977) Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265:687–695

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen ARC (1977) DNA sequencing with chain-terminating. Proc Natl Acad Sci U S A 74:5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schierwater B, Ender A (1993) Different thermostable DNA polymerases may amplify different RAPD products. Nucleic Acids Res 21:4647–4648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schloss PD, Hay AG, Wilson DB, Walker LP (2003) Quantitative and qualitative changes in microbial community structure during the early stages of composting using ARISA. FEMS Microbiol Ecol 46:1–9

    Article  CAS  PubMed  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109:6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen B, Hamelin J, Bru-Adan V, Godon JJ, Chandra TS (2008) Structural divergence of bacterial communities from functionally similar laboratory-scale vermicomposts assessed by PCR-CE-SSCP. J Appl Microbiol 105:2123–2132

    Article  CAS  PubMed  Google Scholar 

  • Sigler WV, Crivii S, Zeyer J (2002) Bacterial succession in glacial forefield soils characterized by community structure, activity and opportunistic growth dynamics. Microb Ecol 44:306–316

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Singh DP, Tiwari R, Kumar K, Singh RV, Singh S, Prasanna R, Saxena AK, Nain L (2015) Taxonomic and functional annotation of gut bacterial communities of Eisenia foetida and Perionyx excavates. Microbiol Res 175:48–56

    Article  CAS  PubMed  Google Scholar 

  • Sinha RK, Agarwal S, Chauhan K, Valani D (2010) The wonders of earthworms and its vermicompost in farm production: Charles Darwin’s ‘friends of farmers’, with potential to replace destructive chemical fertilizers from agriculture. Agric Sci 1:76–94

    Google Scholar 

  • Sklarz M, Angel R, Gillor O, Soares MIM (2009) Evaluating amplified rDNA restriction analysis assay for identification of bacterial communities. Antonie Van Leeuwenhoek 96:659–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speranskaya AS, Khafizov K, Ayginin AA, Krinitsina AA, Omelchenko DO, Nilova MV, Severova EE, Samokhina EN, Shipulin GA, Logacheva MD (2018) Comparative analysis of illumina and ion torrent high-throughput sequencing platforms for identification of plant components in herbal teas. Food Control 93:315–324

    Article  CAS  Google Scholar 

  • Stone A, Steven JS, Heather D (2004) Suppression of soilborne diseases in field agricultural systems: organic matter management, cover cropping, and other cultural practices. In: Magdoff F, Weil RR (eds) Soil organic matter in sustainable agriculture. CRC, Boca Ratan, pp 132–179

    Google Scholar 

  • Strathdee F, Free A (2013) Denaturing gradient gel electrophoresis (DGGE). In: Makovets S (ed) DNA electrophoresis: methods and protocols, methods in molecular biology, vol 1054. Springer, New York, pp 145–157

    Chapter  Google Scholar 

  • Székely AJ, Sipos R, Berta B, Vajna B, Hajdú C, Márialigeti K (2009) DGGE and T-RFLP analysis of bacterial succession during mushroom compost production and sequence-aided T-RFLP profile of mature compost. Microb Ecol 57:522–533

    Article  PubMed  Google Scholar 

  • Treangen TJ, Salzberg SL (2011) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13(1):36–46. [published correction appeared in Nat Rev Genet 13:146]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uchiyama K, Suzuki T, Tatsumi H, Kanetake H, Shioya S (2002) Amplified 16S ribosomal DNA restriction analysis of microbial community structure during rapid degradation of a biopolymer, PHA, by composting. In: Insam H, Riddech N, Klammer S (eds) Microbiology of composting. Springer, Berlin, Heidelberg, pp 83–98

    Chapter  Google Scholar 

  • van de Zande L, Bijlsma R (1995) Limitations of the RAPD technique in phylogeny reconstruction in drosophila. J Evol Biol 8:645–656

    Article  Google Scholar 

  • Villar I, Alves D, Mato S (2017) Product quality and microbial dynamics during vermicomposting and maturation of compost from pig manure. Waste Manag 69:498–507

    Article  CAS  PubMed  Google Scholar 

  • Wagner M, Smidt H, Loy A, Zhou J (2007) Unravelling microbial communities with DNA-microarrays: challenges and future directions. Microbial Ecol 53:498–506

    Article  CAS  Google Scholar 

  • Wilkinson MT, Richards PJ, Humphreys GS (2009) Breaking ground: pedological, geological, and ecological implications of soil bioturbation. Earth-Sci Rev 97:257–272

    Article  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Wang Y, Wang Y, Wu F, Zhang J, Cui R, Wang L, Mu H (2018) Insights into the role of earthworms on the optimization of microbial community structure during vermicomposting of sewage sludge by PLFA analysis. Waste Manag 79:700–708

    Article  PubMed  Google Scholar 

  • Zhen Z, Liu H, Wang N, Guo L, Meng J et al (2014) Effects of manure compost application on soil microbial community diversity and soil microenvironments in a temperate cropland in China. PLoS One 9:e108555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meghvansi, M.K., Chaudhary, K.K., Khan, M.H., Siddiqui, S., Varma, A. (2020). Molecular Tools and Techniques for Understanding the Microbial Community Dynamics of Vermicomposting. In: Meghvansi, M., Varma, A. (eds) Biology of Composts. Soil Biology, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-030-39173-7_7

Download citation

Publish with us

Policies and ethics