Skip to main content

Review on Physiological Effects of Vermicomposts on Plants

  • Chapter
  • First Online:
Biology of Composts

Part of the book series: Soil Biology ((SOILBIOL,volume 58))

Abstract

Vermicompost is a type of organic fertilizer produced by earthworms and their symbiotic microorganisms. In addition to nutrient-rich organic fraction, vermicomposts also contain plant-available soluble minerals as well as substances with plant growth-regulating activity. In order to promote understanding on beneficial effects of vermicompost in different farming systems, the aim of the present review is to analyze possible mechanisms of vermicompost action on plants. After overview of plant growth-affecting activity of vermicomposts at the level of seed germination and vegetative growth, detailed analysis is dedicated to physiological effects associated with mineral nutrition: changes in both soil mineral nutrient availability and their uptake. Further, additional plant growth-regulating activity is considered, with emphasis on plant hormonelike compounds and humic substances. Information on activation of plant metabolism by vermicompost application is given at the level of photosynthesis-related parameters and defense responses. Approaches of evaluation of vermicompost quality based on physiological criteria are described, followed by summary on use of vermicompost in different farming systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelkrim S, Jebara SH, Saadani O, Jebara M (2018) Potential of efficient and resistant plant growth-promoting rhizobacteria in lead uptake and plant defence stimulation in Lathyrus sativus under lead stress. Plant Biol 20:857–869

    Article  CAS  PubMed  Google Scholar 

  • Afkari A (2018) An investigation to the vermicompost efficacy on the activity of antioxidant enzymes and photosynthetic pigments of borage (Borago officinalis L.) under salinity stress conditions. Russ Agric Sci 44:310–317

    Article  Google Scholar 

  • Arancon NQ, Lee S, Edwards CA, Atiyeh R (2003) Effects of humic acids derived from cattle, food and paper-waste vermicomposts on growth of greenhouse plants. Pedobiologia 47:741–744

    CAS  Google Scholar 

  • Arancon NQ, Edwards CA, Lee S, Byrne R (2006) Effects of humic acids from vermicomposts on plant growth. Eur J Soil Biol 42:S65–S69

    Article  CAS  Google Scholar 

  • Arancon NQ, Edwards CA, Yardim EN, Oliver TJ, Byrne RJ, Keeney G (2007) Suppression of two-spotted spider mite (Tetranychus urticae), mealy bug (Pseudococcus sp) and aphid (Myzus persicae) populations and damage by vermicomposts. Crop Protect 26:29–39

    Article  Google Scholar 

  • Aremu AO, Stirk WA, Kulkarni MG, Tarkowská D, Turečková V, Gruz J, Šubrtová M, Pěnčík A, Novák O, Doležal K, Strnad M, Van Staden J (2015) Evidence of phytohormones and phenolic acids variability in garden-waste-derived vermicompost leachate, a well-known plant growth stimulant. Plant Growth Regul 75:483–492

    Article  CAS  Google Scholar 

  • Arshad M, Frankenberger WT (1991) Microbial production of plant hormones. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Beltsville Symposia in agricultural research, vol 14. Springer, Dordrecht, pp 327–334

    Chapter  Google Scholar 

  • Atiyeh RM, Subler S, Edwards CA, Bachman G, Metzger JD, Shuster W (2000) Effects of vermicomposts and compost on plant growth in horticultural container media and soil. Pedobiologia 44:579–590

    Article  Google Scholar 

  • Atiyeh RM, Edwards CA, Metzger JD, Lee S, Arancon NQ (2002) The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresour Technol 84:7–14

    Article  CAS  PubMed  Google Scholar 

  • Baca BE, Elmerich C (2003) Microbial production of plant hormones. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations, nitrogen fixation: origins, applications, and research progress, vol 5. Springer, Dordrecht, pp 113–143

    Chapter  Google Scholar 

  • Bachman GR, Metzger JD (2008) Growth of bedding plants in commercial potting substrate amended with vermicompost. Bioresour Technol 99:3155–3161

    Article  CAS  PubMed  Google Scholar 

  • Britto DR, Kronzuker HJ (2002) NH4 + toxicity in higher plants: a critical review. J Plant Physiol 159:567–584

    Article  CAS  Google Scholar 

  • Cáceres R, Malińska K, Marfà O (2018) Nitrification within composting: a review. Waste Manag 72:119–137

    Article  PubMed  CAS  Google Scholar 

  • Canellas LP, Olivares FL, Okorokova AL, Façanha RA (2002) Humic acids isolated from earth-worm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. J Plant Physiol 130:1951–1957

    Article  CAS  Google Scholar 

  • Canellas LP, Olivares FL, Aguiar NO, Jones DL, Nebbioso A, Mazzei P, Piccolo A (2015) Humic and fulvic acids as biostimulants in horticulture. Sci Hortic 196:15–27

    Article  CAS  Google Scholar 

  • Chen Y, Aviad T (1990) Effects of humic substances on plant growth. In: MacCarthy P, Clapp CE, Malcolm RL, Bloom PR (eds) Humic substances in soil and crop sciences: selected readings. ASA and SSSA, Madison, pp 161–186

    Google Scholar 

  • Doan TT, Ngo PT, Rumpel C, Nguyen BV, Jouquet P (2013) Interactions between compost, vermicompost and earthworms influence plant growth and yield: a one-year greenhouse experiment. Sci Hortic 160:148–154

    Article  Google Scholar 

  • Domínguez J (2004) State-of-the art and new perspectives on vermicomposting research. In: edwards CA (ed) Earthworm ecology, 2nd edn. CRC, Boca Raton, FL, pp 401–424

    Chapter  Google Scholar 

  • Edwards CA, Arancon NQ, Vasko-Bennett M, Askar A, Keeney G (2010) Efficacy of aqueous extracts from vermicomposts on attacks by cucumber beetles (Acalymma vittatum) (Fabr.) on cucumber and tobacco hornworm (Manduca sexta) (L.) on tomatoes. Pedobiologia 53:141–148

    Article  Google Scholar 

  • Fornes F, Mendoza-Hernandez D, Belda RM (2013) Compost versus vermicompost as substrate constituents for rooting shrub cuttings. Spanish J Agric Res 11:518–528

    Article  Google Scholar 

  • Frederickson J, Howell G, Hobson AM (2007) Effect of pre-composting and vermicomposting on compost characteristics. Eur J Soil Biol 43:S320–S326

    Article  CAS  Google Scholar 

  • García AC, Santos LA, Izquierdo FG, Sperandio MVL, Castro RN, Berbara RLL (2012) Vermicompost humic acids as an ecological pathway to protect rice plant against oxidative stress. Ecol Eng 47:203–208

    Article  Google Scholar 

  • Gholami H, Saharkhiz MJ, Fard FR, Ghani A, Nadaf F (2018) Humic acid and vermicompost increased bioactive components, antioxidant activity and herb yield of chicory (Cichorium intybus L.). Biocatal Agric Biotechnol 14:286–292

    Article  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Alekhya G, Prakash B, Kudapa H, Varshney RK (2015) Evaluation of Streptomyces sp. obtained from herbal vermicompost for broad spectrum of plant growth-promoting activities in chickpea. Org Agr 5:123–133

    Article  Google Scholar 

  • Grantina-Ievina L, Ievinsh G (2015) Microbiological characteristics and effect on plants of the organic fertilizer from vermicompost and bat guano. Res Rural Develop 1:95–101

    Google Scholar 

  • Grantina-Ievina L, Andersone U, Berkolde-Pīre D, Nikolajeva V, Ievinsh G (2013) Critical tests for determination of microbiological quality and biological activity in commercial vermicompost samples of different origins. Appl Microbiol Biotechnol 97:10541–10554

    Article  CAS  PubMed  Google Scholar 

  • Grantina-Ievina L, Karlsons A, Andersone-Ozola U, Ievinsh G (2014) Effect of freshwater sapropel on plants in respect to its growth-affecting activity and cultivable microorganism content. Zemdirbyste-Agriculture 101:355–366

    Article  Google Scholar 

  • Grantina-Ievina L, Nikolajeva V, Rostoks N, Skrabule I, Zarina L, Pogulis A, Ievinsh G (2015) Impact of green manure and vermicompost on soil suppressiveness, soil microbial populations and plant growth in conditions of organic agriculture of northern temperate climate. In: Meghvansi MK, Varma A (eds) Organic amendments and soil suppressiveness in plant disease management. Springer, Switzerland, pp 381–399

    Chapter  Google Scholar 

  • Hartz TK, Bottoms TG (2010) Humic substances generally ineffective in improving vegetable crop nutrient uptake or productivity. HortScience 45:906–910

    Article  Google Scholar 

  • Hosseinzadeh SR, Amiri H, Ismaili A (2016) Effect of vermicompost fertilizer on photosynthetic characteristics of chickpea (Cicer arietinum L.) under drought stress. Photosynthetica 54:87–92

    Article  Google Scholar 

  • Huang K, Li F, Wei Y, Fu X, Chen X (2014) Effects of earthworms on physicochemical properties and microbial profiles during vermicomposting of fresh fruit and vegetable wastes. Bioresour Technol 170:45–52

    Article  CAS  PubMed  Google Scholar 

  • Hussain N, Abbasi SA (2018) Efficacy of the vermicomposts of different organic wastes as “clean” fertilizers: state-of-the-art. Sustainability 10:1205

    Article  CAS  Google Scholar 

  • Ievinsh G (2011) Vermicompost treatment differentially affects seed germination, seedling growth and physiological status of vegetable crop species. Plant Growth Regul 65:169–181

    Article  CAS  Google Scholar 

  • Ievinsh G, Vikmane M, Ķirse A, Karlsons A (2017) Effect of vermicompost extract and vermicompost-derived humic acids on seed germination and growth of industrial hemp. Proc Latv Acad Sci B 71:286–292

    Google Scholar 

  • Ievinsh G, Andersone-Ozola U, Zeipina S (2020) Comparison of efficiency of compost and vermicompost as soil amendments for organic production of four herb species. Biol Agric Hortic [under review]

    Google Scholar 

  • Joshi R, Singh J, Vig AP (2015) Vermicompost as an effective organic fertilizer and biocontrol agent: effect on growth, yield and quality of plants. Rev Environ Sci Biotechnol 14:137–159

    Article  CAS  Google Scholar 

  • Karlsons A, Osvalde A, Andersone-Ozola U, Ievinsh G (2016) Vermicompost from municipal sewage sludge affects growth and mineral nutrition of winter rye (Secale cereale) plants. J Plant Nutr 39:765–780

    Article  CAS  Google Scholar 

  • Kopec M, Gondek K, Baran A (2013) Assessment of respiration activity and ecotoxicity of composts containing biopolymers. Ecotoxicol Environ Saf 89:137–142

    Article  CAS  PubMed  Google Scholar 

  • Krishnamoorthy RV, Vajranabhaiah SN (1986) Biological activity of earthworm casts: an assessment of plant growth promoter levels in casts. Proc Indian Acad Sci Anim Sci 95:341–351

    Article  Google Scholar 

  • Lazcano C, Gómez-Brandón M, Domínguez J (2008) Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere 72:1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Lazcano C, Arnold J, Tato A, Zaller JG, Domínguez J (2009) Compost and vermicompost as nursery pot components: effects on tomato plant growth and morphology. Spanish J Agric Res 7:944–951

    Article  Google Scholar 

  • Lazcano C, Sampedro L, Zas R, Domínguez J (2010) Vermicompost enhances germination of the maritime pine (Pinus pinaster Ait.). New For 39:387–400

    Article  Google Scholar 

  • Lotfi R, Kalaji HM, Valizadeh GR, Behrozyar EK, Hemati A, Gharavi-Kochebagh P, Ghassemi A (2018) Effects of humic acid on photosynthetic efficiency of rapeseed plants growing under different watering conditions. Photosynthetica 56:962–970

    Article  CAS  Google Scholar 

  • Makkar C, Singh J, Parkash C (2017) Vermicompost and vermiwash as supplement to improve seedling, plant growth and yield in Linum usitassimum L. for organic agriculture. Int J Recycl Org Waste Agricult 6:203–218

    Article  Google Scholar 

  • Marschner H, Kirkby EA, Cakmak I (1996) Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot 47:1255–1263

    Article  CAS  PubMed  Google Scholar 

  • Mupambwa HA, Mnkeni PNS (2018) Optimizing the vermicomposting of organic wastes amended with inorganic materials for production of nutrient-rich organic fertilizers: a review. Environ Sci Pollut Res 25:10577–10595

    Article  Google Scholar 

  • Mupondi LT, Mnkeni PNS, Muchaonyerwa P, Mupambwa HA (2018) Vermicomposting manure-paper mixture with igneous rock phosphate enhances biodegradation, phosphorus bioavailability and reduces heavy metal concentrations. Heliyon 4:e00749

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakhshiniev B, Biddinika MK, Gonzales HB, Sumida H, Yoshikawa K (2014) Evaluation of hydrothermal treatment in enhancing rice straw compost stability and maturity. Bioresour Technol 151:306–313

    Article  CAS  PubMed  Google Scholar 

  • Noroozisharaf A, Kaviani M (2018) Effect of soil application of humic acid on nutrients uptake, essential oil and chemical compositions of garden thyme (Thymus vulgaris L.) under greenhouse conditions. Physiol Mol Biol Plants 24:423–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olaetxea M, De Hita D, Garcia CA, Fuentes M, Baigorri R, Mora V, Garnica M, Urrutia O, Erro J, Zamarreño AM, Berbara RL, Garcia-Mina JM (2018) Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root- and shoot-growth. Appl Soil Ecol 123:521–537

    Article  Google Scholar 

  • Osvalde A (2011) Optimization of plant mineral nutrition revisited: the roles of plant requirements, nutrient interactions, and soil properties in fertilization management. Environ Exp Biol 9:1–8

    Google Scholar 

  • Osvalde A, Karlsons A, Čekstere G, Maļecka S (2012) Effect of humic substances on nutrient status and yield of onion (Allium cepa L.) in field conditions. Proc Latv Acad Sci B 66:192–199

    CAS  Google Scholar 

  • Osvalde A, Karlsons A, Cekstere G, Vojevode L (2016) The effect of vermicompost-derived humic substances on nutrient status and yield of organic potato in field conditions. Acta Hortic 1142:277–283

    Article  Google Scholar 

  • Piccolo A, Celano G, Pietramellara G (1993) Effects of fractions of coal-derived humic substances on seed germination and growth of seedlings (Lactuga sativa and Lycopersicon esculentum). Biol Fertil Soils 16:11–15

    Article  CAS  Google Scholar 

  • Pii Y, Mimmo T, Tomasi N, Terzano R, Sesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol Fertil Soils 51:403–415

    Article  CAS  Google Scholar 

  • Pirdashti H, Motaghian A, Bahmanyar MA (2010) Effects of organic amendments application on grain yield, leaf chlorophyll content and some morphological characteristics in soybean cultivars. J Plant Nutr 33:485–495

    Article  CAS  Google Scholar 

  • Ravindran B, Wong JWC, Selvam A, Sekaran G (2016) Influence of microbial diversity and plant growth hormones in compost and vermicompost from fermented tannery waste. Bioresour Technol 217:200–204

    Article  CAS  PubMed  Google Scholar 

  • Rose MT, Patti AF, Little KR, Brown AL, Jackson WR, Cavagnaro TR (2014) A meta-analysis and review of plant -growth response to humic substances: practical implications for agriculture. In: Sparks DL (ed) Advances in agronomy, vol 124. Elsevier, Amsterdam, pp 37–89

    Google Scholar 

  • Šenberga A, Andersone U, Ievinsh G (2012) Increased thermotolerance of photosystem II activity in Phaseolus vulgaris by Trichoderma harzianum, vermicompost extract and humic acid treatments. Abstract of the 18th FESPB/EPSO Plant Biology Congress 2012, Freiburg

    Google Scholar 

  • Sreevidya M, Gopalakrishnan S, Kudapa H, Varshney RK (2016) Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea. Braz J Microbiol 47:85–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava V, Gupta SK, Singh P, Sharma B, Singh RP (2018) Biochemical, physiological, and yield responses of lady’s finger (Abelmoschus esculentus L.) grown on varying ratios of municipal solid waste vermicompost. Int J Recyl Org Waste Agric 7:241–250

    Article  Google Scholar 

  • Tomati U, Grappeli A, Galli E (1988) The hormone-like effect of earthworm casts on plant growth. Biol Fertil Soils 5:288–294

    Article  CAS  Google Scholar 

  • Van der Ent S, Van Wees SCM, Pieterse CMJ (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70:1581–1588

    Article  PubMed  CAS  Google Scholar 

  • Warman PR, AngLopez MJ (2010) Vermicompost derived from different feedstocks as a plant growth medium. Bioresour Technol 101:4479–4483

    Article  CAS  PubMed  Google Scholar 

  • Wong WS, Tan SN, Ge L, Chen X, Letham DS, Wong JWH (2016) The importance of phytohormones and microbes in biostimulants: mass spectrometric evidence and their positive effects on plant growth. Acta Hortic 1148:49–59

    Article  Google Scholar 

  • Xu D-B, Wang Q-J, Wu Y-C, Yu G-H, Shen Q-R, Huang Q-W (2012) Humic-like substances from different compost extracts could significantly promote cucumber growth. Pedosphere 22:815–824

    Article  CAS  Google Scholar 

  • Xu L, Yan D, Ren X, Wei Y, Zhou J, Zhao H, Liang M (2016) Vermicompost improves the physiological and biochemical responses of blessed thistle (Silybum marianum Gaertn.) and peppermint (Mentha haplocalyx Briq) to salinity stress. Ind Crops Prod 94:574–585

    Article  CAS  Google Scholar 

  • Yadav A, Garg VK (2015) Influence of vermi-fortification on chickpea (Cicer arietinum L.) growth and photosynthetic pigments. Int J Recycl Org Waste Agriculture 4:299–305

    Article  Google Scholar 

  • Yogev A, Raviv M, Hadar Y, Cohen R, Wolf S, Gil L, Katan J (2010) Induced resistance as a putative component of compost suppressiveness. Biol Control 54:46–51

    Article  Google Scholar 

  • Zaller JG (2007) Vermicompost as a substitute for peat in potting media: effects on germination, biomass allocation, yields and fruit quality of three tomato varieties. Sci Hortic 112:191–199

    Article  Google Scholar 

  • Zarrabi M, Mohammadi AA, Al-Musawi TJ, Saleh HN (2018) Using natural clinoptilolite zeolite as an amendment in vermicomposting of food waste. Environ Sci Pollut Res Int 25:23045–23054

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Tan SN, Wong WS, Ng CYL, Teo CH, Ge L, Chen X, Yong JWH (2014) Mass spectrometric evidence for the occurrence of plant growth promoting cytokinins in vermicompost tea. Biol Fertil Soils 50:401–403

    Article  CAS  Google Scholar 

  • Zhao H-T, Li T-P, Zhang Y, Hu J, Bai Y-C, Shan Y-H, Ke F (2017) Effects of vermicompost amendment as a basal fertilizer on soil properties and cucumber yield and quality under continuous cropping conditions in a greenhouse. J Soils Sedminets 17:2718–2730

    Article  CAS  Google Scholar 

  • Zuo Y, Zhang J, Zhao R, Dai H, Zhang Z (2018) Application of vermicompost improves strawberry growth and quality through increased photosynthesis rate, free radical scavenging and soil enzymatic activity. Sci Hortic 233:132–140

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gederts Ievinsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ievinsh, G. (2020). Review on Physiological Effects of Vermicomposts on Plants. In: Meghvansi, M., Varma, A. (eds) Biology of Composts. Soil Biology, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-030-39173-7_4

Download citation

Publish with us

Policies and ethics