Skip to main content

Right Heart Failure After Cardiac Transplantation

  • Chapter
  • First Online:
Clinical Cases in Right Heart Failure

Part of the book series: Clinical Cases in Cardiology ((CCC))

  • 729 Accesses

Abstract

The right ventricle (RV) is vulnerable during and after heart transplantation. The donor heart goes through a series of events during procurement and implantation which can contribute to right heart failure (RHF). The four main physiologic insults are brainstem death of the donor, hypothermic ischemia during transportation, warm ischemia during surgery and reperfusion injury upon release of the cross-clamp. Recipients with pre-existing pulmonary hypertension are at highest risk of postoperative RHF. RHF typically occurs due to decreased contractility, increased preload or increased afterload during transplantation. The RV is susceptible to periprocedural myocardial strain, ischemia, cardioplegia and surgical trauma as well as hyperacute rejection and pulmonary emboli. In order to detect RHF and determine the etiology, invasive hemodynamic monitoring is required as well as advanced echocardiographic imaging. The management of acute RHF involves preload optimization, hemodynamic stabilization, maintenance of sinus rhythm and atrioventricular synchrony, and ventilatory support. Mechanical support is important in the setting of refractory RHF and needs to be instituted early on if there is poor response to medical therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D’Alessandro C, et al. Predictive risk factors for primary graft failure requiring temporary extra-corporeal membrane oxygenation support after cardiac transplantation in adults. Eur J Cardiothorac Surg. 2011;40(4):962–9.

    PubMed  Google Scholar 

  2. D’Ancona G, et al. Primary graft failure after heart transplantation: the importance of donor pharmacological management. Transplant Proc. 2010;42(3):710–2.

    Article  PubMed  Google Scholar 

  3. Marasco SF, et al. Impact of warm ischemia time on survival after heart transplantation. Transplant Proc. 2012;44(5):1385–9.

    Article  CAS  PubMed  Google Scholar 

  4. Russo MJ, et al. Factors associated with primary graft failure after heart transplantation. Transplantation. 2010;90(4):444–50.

    Article  PubMed  Google Scholar 

  5. Segovia J, et al. RADIAL: a novel primary graft failure risk score in heart transplantation. J Heart Lung Transplant. 2011;30(6):644–51.

    Article  PubMed  Google Scholar 

  6. Kobashigawa J, et al. Report from a consensus conference on primary graft dysfunction after cardiac transplantation. J Heart Lung Transplant. 2014;33(4):327–40.

    Article  PubMed  Google Scholar 

  7. Cosio Carmena MD, et al. Primary graft failure after heart transplantation: characteristics in a contemporary cohort and performance of the RADIAL risk score. J Heart Lung Transplant. 2013;32(12):1187–95.

    Article  PubMed  Google Scholar 

  8. Chen EP, et al. Right ventricular adaptation to increased afterload after orthotopic cardiac transplantation in the setting of recipient chronic pulmonary hypertension. Circulation. 1997;96(9 Suppl):Ii-141–7.

    Google Scholar 

  9. Costard-Jackle A, Fowler MB. Influence of preoperative pulmonary artery pressure on mortality after heart transplantation: testing of potential reversibility of pulmonary hypertension with nitroprusside is useful in defining a high risk group. J Am Coll Cardiol. 1992;19(1):48–54.

    Article  CAS  PubMed  Google Scholar 

  10. Klima U, et al. Severe right heart failure after heart transplantation. A single-center experience. Transpl Int. 2005;18(3):326–32.

    Article  PubMed  Google Scholar 

  11. Bittner HB, et al. Brain death alters cardiopulmonary hemodynamics and impairs right ventricular power reserve against an elevation of pulmonary vascular resistance. Chest. 1997;111(3):706–11.

    Article  CAS  PubMed  Google Scholar 

  12. Koch A, et al. Capillary endothelia and cardiomyocytes differ in vulnerability to ischemia/reperfusion during clinical heart transplantation. Eur J Cardiothorac Surg. 2001;20(5):996–1001.

    Article  CAS  PubMed  Google Scholar 

  13. Saito S, et al. Successful treatment of cardiogenic shock caused by humoral cardiac allograft rejection. Circ J. 2009;73(5):970–3.

    Article  PubMed  Google Scholar 

  14. Weil R 3rd, et al. Hyperacute rejection of a transplanted human heart. Transplantation. 1981;32(1):71–2.

    PubMed  PubMed Central  Google Scholar 

  15. Alvarez-Alvarez RJ, et al. Venous thromboembolism in heart transplant recipients: incidence, recurrence and predisposing factors. J Heart Lung Transplant. 2015;34(2):167–74.

    Article  PubMed  Google Scholar 

  16. Elboudwarej O, et al. Risk of deep vein thrombosis and pulmonary embolism after heart transplantation: clinical outcomes comparing upper extremity deep vein thrombosis and lower extremity deep vein thrombosis. Clin Transpl. 2015;29(7):629–35.

    Article  Google Scholar 

  17. Costanzo MR, et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J Heart Lung Transplant. 2010;29(8):914–56.

    Article  PubMed  Google Scholar 

  18. Campbell P, et al. Mismatch of right- and left-sided filling pressures in chronic heart failure. J Card Fail. 2011;17(7):561–8.

    Article  PubMed  Google Scholar 

  19. Drazner MH, et al. Relationship between right and left-sided filling pressures in 1000 patients with advanced heart failure. J Heart Lung Transplant. 1999;18(11):1126–32.

    Article  CAS  PubMed  Google Scholar 

  20. Guyton AC, Lindsey AW, Gilluly JJ. The limits of right ventricular compensation following acute increase in pulmonary circulatory resistance. Circ Res. 1954;2(4):326–32.

    Article  CAS  PubMed  Google Scholar 

  21. Erickson KW, et al. Influence of preoperative transpulmonary gradient on late mortality after orthotopic heart transplantation. J Heart Transplant. 1990;9(5):526–37.

    CAS  PubMed  Google Scholar 

  22. Griepp RB, et al. Determinants of operative risk in human heart transplantation. Am J Surg. 1971;122(2):192–7.

    Article  CAS  PubMed  Google Scholar 

  23. Kirklin JK, et al. Pulmonary vascular resistance and the risk of heart transplantation. J Heart Transplant. 1988;7(5):331–6.

    CAS  PubMed  Google Scholar 

  24. Kirklin JK, et al. Analysis of morbid events and risk factors for death after cardiac transplantation. J Am Coll Cardiol. 1988;11(5):917–24.

    Article  CAS  PubMed  Google Scholar 

  25. Butler J, et al. Pre-transplant reversible pulmonary hypertension predicts higher risk for mortality after cardiac transplantation. J Heart Lung Transplant. 2005;24(2):170–7.

    Article  PubMed  Google Scholar 

  26. Chen JM, et al. Reevaluating the significance of pulmonary hypertension before cardiac transplantation: determination of optimal thresholds and quantification of the effect of reversibility on perioperative mortality. J Thorac Cardiovasc Surg. 1997;114(4):627–34.

    Article  CAS  PubMed  Google Scholar 

  27. Korabathina R, et al. The pulmonary artery pulsatility index identifies severe right ventricular dysfunction in acute inferior myocardial infarction. Catheter Cardiovasc Interv. 2012;80(4):593–600.

    Article  PubMed  Google Scholar 

  28. Truby LK, et al. Risk of severe primary graft dysfunction in patients bridged to heart transplantation with continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2018;37(12):1433–42.

    Article  PubMed  Google Scholar 

  29. Kobashigawa JA. Clinical guide to heart transplantation. Cham: Springer; 2017.

    Book  Google Scholar 

  30. Shivalkar B, et al. Variable effects of explosive or gradual increase of intracranial pressure on myocardial structure and function. Circulation. 1993;87(1):230–9.

    Article  CAS  PubMed  Google Scholar 

  31. Jahania MS, et al. Acute allograft failure in thoracic organ transplantation. J Card Surg. 2000;15(2):122–8.

    CAS  PubMed  Google Scholar 

  32. Novitzky D, Rose AG, Cooper DK. Injury of myocardial conduction tissue and coronary artery smooth muscle following brain death in the baboon. Transplantation. 1988;45(5):964–6.

    Article  CAS  PubMed  Google Scholar 

  33. Ryan JB, et al. Functional evidence of reversible ischemic injury immediately after the sympathetic storm associated with experimental brain death. J Heart Lung Transplant. 2003;22(8):922–8.

    Article  PubMed  Google Scholar 

  34. Novitzky D, et al. Hormonal therapy of the brain-dead organ donor: experimental and clinical studies. Transplantation. 2006;82(11):1396–401.

    Article  CAS  PubMed  Google Scholar 

  35. Souter MJ, et al. Organ donor management: part 1. Toward a consensus to guide anesthesia services during donation after brain death. Semin Cardiothorac Vasc Anesth. 2018;22(2):211–22.

    Article  PubMed  Google Scholar 

  36. Ardehali A, et al. Ex-vivo perfusion of donor hearts for human heart transplantation (PROCEED II): a prospective, open-label, multicentre, randomised non-inferiority trial. Lancet. 2015;385(9987):2577–84.

    Article  PubMed  Google Scholar 

  37. Chan JL, et al. Intermediate outcomes with ex-vivo allograft perfusion for heart transplantation. J Heart Lung Transplant. 2017;36(3):258–63.

    Article  PubMed  Google Scholar 

  38. Michel SG, et al. Preservation of donor hearts using hypothermic oxygenated perfusion. Ann Transplant. 2014;19:409–16.

    Article  CAS  PubMed  Google Scholar 

  39. Russo MJ, et al. The effect of ischemic time on survival after heart transplantation varies by donor age: an analysis of the united network for organ sharing database. J Thorac Cardiovasc Surg. 2007;133(2):554–9.

    Article  PubMed  Google Scholar 

  40. Boengler K, Schulz R, Heusch G. Loss of cardioprotection with ageing. Cardiovasc Res. 2009;83(2):247–61.

    Article  CAS  PubMed  Google Scholar 

  41. Marelli D, et al. The use of donor hearts with left ventricular hypertrophy. J Heart Lung Transplant. 2000;19(5):496–503.

    Article  CAS  PubMed  Google Scholar 

  42. Anaya-Prado R, Delgado-Vazquez JA. Scientific basis of organ preservation. Curr Opin Organ Transplant. 2008;13(2):129–34.

    Article  PubMed  Google Scholar 

  43. Hicks M, et al. Organ preservation. Methods Mol Biol. 2006;333:331–74.

    PubMed  Google Scholar 

  44. Karmazyn M, et al. The myocardial Na(+)-H(+) exchange: structure, regulation, and its role in heart disease. Circ Res. 1999;85(9):777–86.

    Article  CAS  PubMed  Google Scholar 

  45. Vigne P, Frelin C, Lazdunski M. The Na+/H+ exchanger in eukaryotic cells: biochemical and pharmacological properties and physiological role. Biochimie. 1985;67(1):129–35.

    Article  CAS  PubMed  Google Scholar 

  46. Banner NR, et al. The importance of cold and warm cardiac ischemia for survival after heart transplantation. Transplantation. 2008;86(4):542–7.

    Article  PubMed  Google Scholar 

  47. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121–35.

    Article  CAS  PubMed  Google Scholar 

  48. Morciano G, et al. Mechanistic role of mPTP in ischemia-reperfusion injury. Adv Exp Med Biol. 2017;982:169–89.

    Article  CAS  PubMed  Google Scholar 

  49. Stobierska-Dzierzek B, Awad H, Michler RE. The evolving management of acute right-sided heart failure in cardiac transplant recipients. J Am Coll Cardiol. 2001;38(4):923–31.

    Article  CAS  PubMed  Google Scholar 

  50. Patarroyo M, et al. Pre-operative risk factors and clinical outcomes associated with vasoplegia in recipients of orthotopic heart transplantation in the contemporary era. J Heart Lung Transplant. 2012;31(3):282–7.

    Article  PubMed  Google Scholar 

  51. Chan JL, et al. Vasoplegia after heart transplantation: outcomes at 1 year. Interact Cardiovasc Thorac Surg. 2017;25(2):212–7.

    Article  PubMed  Google Scholar 

  52. Omar S, Zedan A, Nugent K. Cardiac vasoplegia syndrome: pathophysiology, risk factors and treatment. Am J Med Sci. 2015;349(1):80–8.

    Article  PubMed  Google Scholar 

  53. Haddad F, et al. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117(11):1436–48.

    Article  PubMed  Google Scholar 

  54. Ardehali A, et al. Inhaled nitric oxide for pulmonary hypertension after heart transplantation. Transplantation. 2001;72(4):638–41.

    Article  CAS  PubMed  Google Scholar 

  55. Argenziano M, et al. A prospective randomized trial of arginine vasopressin in the treatment of vasodilatory shock after left ventricular assist device placement. Circulation. 1997;96(9 Suppl):Ii-286–90.

    Google Scholar 

  56. Armitage JM, Hardesty RL, Griffith BP. Prostaglandin E1: an effective treatment of right heart failure after orthotopic heart transplantation. J Heart Transplant. 1987;6(6):348–51.

    CAS  PubMed  Google Scholar 

  57. Auler Junior JO, et al. Low doses of inhaled nitric oxide in heart transplant recipients. J Heart Lung Transplant. 1996;15(5):443–50.

    CAS  PubMed  Google Scholar 

  58. Chen EP, et al. Hemodynamic and inotropic effects of milrinone after heart transplantation in the setting of recipient pulmonary hypertension. J Heart Lung Transplant. 1998;17(7):669–78.

    CAS  PubMed  Google Scholar 

  59. De Santo LS, et al. Role of sildenafil in acute posttransplant right ventricular dysfunction: successful experience in 13 consecutive patients. Transplant Proc. 2008;40(6):2015–8.

    Article  PubMed  CAS  Google Scholar 

  60. Morales DL, et al. A double-blind randomized trial: prophylactic vasopressin reduces hypotension after cardiopulmonary bypass. Ann Thorac Surg. 2003;75(3):926–30.

    Article  PubMed  Google Scholar 

  61. Pascual JM, et al. Prostacyclin in the management of pulmonary hypertension after heart transplantation. J Heart Transplant. 1990;9(6):644–51.

    CAS  PubMed  Google Scholar 

  62. Theodoraki K, et al. Inhaled iloprost in eight heart transplant recipients presenting with post-bypass acute right ventricular dysfunction. Acta Anaesthesiol Scand. 2006;50(10):1213–7.

    Article  CAS  PubMed  Google Scholar 

  63. Taghavi S, et al. Extracorporeal membrane oxygenation is superior to right ventricular assist device for acute right ventricular failure after heart transplantation. Ann Thorac Surg. 2004;78(5):1644–9.

    Article  PubMed  Google Scholar 

  64. Thomas HL, et al. Incidence and outcome of Levitronix CentriMag support as rescue therapy for early cardiac allograft failure: a United Kingdom national study. Eur J Cardiothorac Surg. 2011;40(6):1348–54.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lebeis, T., Lewis, G. (2020). Right Heart Failure After Cardiac Transplantation. In: Tsao, L., Afari, M. (eds) Clinical Cases in Right Heart Failure. Clinical Cases in Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-38662-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38662-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38661-0

  • Online ISBN: 978-3-030-38662-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics