Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 878))

  • 264 Accesses

Abstract

We deal with fuzzy logical operations with values in the real unit interval. Many of them can be considered equivalent up to an isomorphism (i.e., increasing bijection) of the set of values. This is the case of all involutive fuzzy negations; an elegant proof was given by Nguyen and Walker (A first course in fuzzy logic, 2nd edn. Chapman & Hall/CRC, Boca Raton, 2000 [23]) . The situation is more tricky for binary operations, triangular norms, triangular conorms, and fuzzy implications. For the most common classes of these operations, the existence of their (additive or multiplicative) generators is known; however, their computation can be often unfeasible. We proved that a rather general subclass allows computing the generators from partial derivatives. Here we summarize preceding results in this direction (mostly with simplified proofs) and add several new ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although this is only a tiny piece of the work of Elbert Walker and his coauthors, we wish to recall this sample; one of many.

  2. 2.

    A different definition of the Archimedean property is used in general, see e.g. [13]. For continuous operations, this simpler condition is equivalent. Also, the definitions of generators which follow are simplified for the case of continuous Archimedean operations.

  3. 3.

    The operator notation might be considered unusual, but the use of Leibnitz’ or Newton’s notation for partial derivatives leads to formulations which are ambiguous or messy.

  4. 4.

    Only nilpotent t-norms may satisfy this condition.

  5. 5.

    More correctly, affine.

  6. 6.

    Only nilpotent t-norms may satisfy this condition.

  7. 7.

    More correctly, affine.

References

  1. Abel, N.: Untersuchungen der Funktionen zweier unabhängigen veränderlichen Grössen \(x\) und \(y\) wie \(f\left( x, y\right) \), welche die Eigenschaft von \(x\), \(y\) und \(z\) ist. J. Für Die Reine Und Angew. Math. 1, 11–15 (1826)

    Google Scholar 

  2. Aczél, J.: Sur les opérations définies pour des nombres réels. Bull. Société Mathématique Fr. 76, 59–64 (1949)

    MATH  Google Scholar 

  3. Alsina, C.: On a method of Pi-Calleja for describing additive generators of associative functions. Aequationes Math. 43, 14–20 (1992)

    Article  MathSciNet  Google Scholar 

  4. Alsina, C., Frank, M.J., Schweizer, B.: Associative Functions: Triangular Norms and Copulas. World Scientific, Singapore (2006)

    Book  Google Scholar 

  5. Baczyński, M., Jayaram, B.: Fuzzy implications. In: Studies in Fuzziness and Soft Computing, vol. 231. Springer, Berlin (2008)

    Google Scholar 

  6. Baczyński, M., Jayaram, B.: (S, N)- and R-implications: a state-of-the-art survey. Fuzzy Sets Syst. 159, 1836–1859 (2008)

    Google Scholar 

  7. Bustince, H., Burillo, P., Soria, F.: Automorphisms, negations and implication operators. Fuzzy Sets Syst. 134(2), 209–229 (2003)

    Article  MathSciNet  Google Scholar 

  8. Clara, N.: Analysis of the law of non-contradiction using additive generators. In: 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Guilin, China, 1099–1106 (2017)

    Google Scholar 

  9. Craigen, R., Páles, Z.: The associativity equation revisited. Aequationes Math. 37, 306–312 (1989)

    Article  MathSciNet  Google Scholar 

  10. Dombi, J.: A general class of fuzzy operators, the De Morgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Sets Syst. 8, 149–163 (1982)

    Article  MathSciNet  Google Scholar 

  11. Ghiselli Ricci, R., Navara, M.: Convexity conditions on t-norms and their additive generators. Fuzzy Sets Syst. 151, 353–361 (2005). https://doi.org/10.1016/j.fss.2004.05.005

  12. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)

    Book  Google Scholar 

  13. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Trends in Logic, vol. 8. Kluwer Academic Publishers, Dordrecht, Netherlands (2000)

    Google Scholar 

  14. Klement, E.P., Mesiar, R., Pap, E.: Triangular norms: some open questions. In: Proceeding Linz Seminar 2003, Johannes Kepler University Linz, Austria, 135–138 (2003)

    Google Scholar 

  15. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic, Theory and Applications. Prentice-Hall (1995)

    Google Scholar 

  16. Ling, C.M.: Representation of associative functions. Publ. Math. Debr. 12, 189–212 (1965)

    MathSciNet  MATH  Google Scholar 

  17. Massanet, S., Torrens, J.: A new method of generating fuzzy implications from given ones. EUSFLAT-LFA, Aix-les-Bains. France 215–222 (2011)

    Google Scholar 

  18. Mostert, P.S., Shields, A.L.: On the structure of semi-groups on a compact manifold with boundary. Ann. of Math., II. Ser. 65, 117–143 (1957)

    Google Scholar 

  19. Navara, M., Petrík, M.: Two methods of reconstruction of generators of continuous t-norms. 12th International Conference Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 1016–1021. Málaga, Spain (2008)

    Google Scholar 

  20. Navara, M., Petrík, M., Sarkoci, P.: Explicit formulas for generators of triangular norms. Publ. Math. Debrecen 77, 171–191 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Navara, M.: Convex combinations of fuzzy logical operations. Fuzzy Sets Syst. 264, 51–63 (2015). https://doi.org/10.1016/j.fss.2014.10.013

    Article  MathSciNet  MATH  Google Scholar 

  22. Navara, M.: Formulas for generators of R-implications. Fuzzy Sets Syst. 359, 80–89 (2019). https://doi.org/10.1016/j.fss.2018.09.011

  23. Nguyen, H.T., Walker, E.: A First Course in Fuzzy Logic, 2nd edn. Chapman & Hall/CRC, Boca Raton (2000)

    Google Scholar 

  24. Petrík, M.: Convex combinations of strict t-norms. Soft Computing - A Fusion of Foundations, Methodol. Appl. 14(10), 1053–1057 (August 2010). https://doi.org/10.1007/s00500-009-0484-3

  25. Pi-Calleja, P.: Las ecuacionas funcionales de la teoría de magnitudes. In: Segundo Symposium de Matemática, Villavicencio, Mendoza, 199–280. Coni, Buenos Aires (1954)

    Google Scholar 

  26. Qin, F., Baczyński, M., A. Xie: Distributive equation of implications based on continuous triangular norms. EUSFLAT-LFA, Aix-les-Bains. France 246–253 (2011)

    Google Scholar 

  27. Schweizer, B., Sklar, A.: Probabilistic Metric Spaces, 2nd edn (2006). North-Holland, Amsterdam, Dover Publications, Mineola, NY (1983)

    Google Scholar 

  28. Takaci, A.: Schur-concave triangular norms: characterization and application in pFCSP. Fuzzy Sets Syst. 155, 50–64 (2005)

    Article  MathSciNet  Google Scholar 

  29. Tomás, M.S.: Sobre algunas medias de funciones asociativas. Stochastica 11(1), 25–34 (1987)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported by the European Regional Development Fund, project “Center for Advanced Applied Science” (No. CZ.02.1.01/0.0/0.0/16_019/0000778).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Navara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Navara, M., Petrík, M. (2020). Generators of Fuzzy Logical Operations. In: Nguyen, H., Kreinovich, V. (eds) Algebraic Techniques and Their Use in Describing and Processing Uncertainty. Studies in Computational Intelligence, vol 878. Springer, Cham. https://doi.org/10.1007/978-3-030-38565-1_8

Download citation

Publish with us

Policies and ethics