Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 878))

Abstract

For a commutative ring R with identity, a Specker R-algebra is a commutative unital R-algebra generated by a Boolean algebra of idempotents, each nonzero element of which is faithful. Such algebras have arisen in the study of \(\ell \)-groups, idempotent-generated rings, Boolean powers of commutative rings, Pierce duality, and rings of continuous real-valued functions. We trace the origin of this notion from early studies of subgroups of bounded integer-valued functions to a variety of current contexts involving ring-theoretic, topological, and homological aspects of idempotent-generated algebras.

Dedicated to the memory of Elbert Walker

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For background on \(\ell \)-groups, see [11, Ch. XIII].

References

  1. Baer, R.: Abelian groups without elements of finite order. Duke Math. J. 3(1), 68–122 (1937)

    Article  MathSciNet  Google Scholar 

  2. Ball, R.N., Marra, V.: Unital hyperarchimedean vector lattices. Topology Appl. 170, 10–24 (2014)

    Article  MathSciNet  Google Scholar 

  3. Banaschewski, B., Nelson, E.: Boolean powers as algebras of continuous functions. Dissertationes Math. (Rozprawy Mat.) 179, 51 (1980)

    Google Scholar 

  4. Bergman, G.M.: Boolean rings of projection maps. J. London Math. Soc. 4, 593–598 (1972)

    Article  MathSciNet  Google Scholar 

  5. Bezhanishvili, G.: Stone duality and Gleason covers through de Vries duality. Topology Appl. 157(6), 1064–1080 (2010)

    Article  MathSciNet  Google Scholar 

  6. Bezhanishvili, G., Marra, V., Morandi, P.J., Olberding, B.: Idempotent generated algebras and Boolean powers of commutative rings. Algebra Universalis 73(2), 183–204 (2015)

    Article  MathSciNet  Google Scholar 

  7. Bezhanishvili, G., Marra, V., Morandi, P.J., Olberding, B.: De Vries powers: a generalization of Boolean powers for compact Hausdorff spaces. J. Pure Appl. Algebra 219(9), 3958–3991 (2015)

    Article  MathSciNet  Google Scholar 

  8. Bezhanishvili, G., Morandi, P.J., Olberding, B.: Bounded Archimedean \(\ell \)-algebras and Gelfand-Neumark-Stone duality. Theory Appl. Categ. 28, Paper No. 16, 435–475 (2013)

    Google Scholar 

  9. Bezhanishvili, G., Morandi, P.J., Olberding, B.: A functional approach to Dedekind completions and the representation of vector lattices and \(\ell \)-algebras by normal functions. Theory Appl. Categ. 31, Paper No. 37, 1095–1133 (2016)

    Google Scholar 

  10. Bezhanishvili, G., Morandi, P.J., Olberding, B.: Pierce sheaves and commutative idempotent generated algebras. Fund. Math. 240(2), 105–136 (2018)

    Article  MathSciNet  Google Scholar 

  11. Birkhoff, G.: Lattice theory, American Mathematical Society Colloquium Publications, vol. 25, 3rd edn. American Mathematical Society, Providence, R.I. (1979)

    Google Scholar 

  12. Burris, S., Sankappanavar, H.P.: A course in universal algebra, Graduate Texts in Mathematics, vol. 78. Springer-Verlag, New York (1981)

    Google Scholar 

  13. Conrad, P.: Epi-archimedean groups. Czechoslovak Math. J. 24(99), 192–218 (1974)

    MathSciNet  MATH  Google Scholar 

  14. Conrad, P., Darnel, M.: Lattice-ordered groups whose lattices determine their additions. Trans. Amer. Math. Soc. 330(2), 575–598 (1992)

    Article  MathSciNet  Google Scholar 

  15. Conrad, P., Darnel, M.: Generalized Boolean algebras in lattice-ordered groups. Order 14(4), 295–319 (1997/98)

    Google Scholar 

  16. Conrad, P., Darnel, M.: Subgroups and hulls of Specker lattice-ordered groups. Czechoslovak Math. J. 51(126)(2), 395–413 (2001)

    Google Scholar 

  17. Darnel, M.: Theory of lattice-ordered groups, Monographs and Textbooks in Pure and Applied Mathematics, vol. 187. Marcel Dekker Inc, New York (1995)

    Google Scholar 

  18. de Vries, H.: Compact spaces and compactifications. An algebraic approach. Ph.D. thesis, University of Amsterdam (1962)

    Google Scholar 

  19. Hungerford, T.W.: Algebra, graduate texts in Mathematics, vol. 73. Springer-Verlag, New York-Berlin (1980). Reprint of the 1974 original

    Google Scholar 

  20. Luxemburg, W.A.J., Zaanen, A.C.: Riesz spaces, vol. I. North-Holland Publishing Co., Amsterdam (1971)

    Google Scholar 

  21. Nöbeling, G.: Verallgemeinerung eines Satzes von Herrn E. Specker. Invent. Math. 6, 41–55 (1968)

    Article  MathSciNet  Google Scholar 

  22. Pierce, R.S.: Modules over commutative regular rings. Memoirs of the American Mathematical Society, No. 70. American Mathematical Society, Providence, R.I. (1967)

    Google Scholar 

  23. Rota, G.C.: The valuation ring of a distributive lattice. In: Proceedings of the University of Houston Lattice Theory Conference (Houston, Tex., 1973), pp. 574–628. Dept. Math., Univ. Houston, Houston, Tex. (1973)

    Google Scholar 

  24. Specker, E.: Additive Gruppen von Folgen ganzer Zahlen. Portugaliae Math. 9, 131–140 (1950)

    MathSciNet  MATH  Google Scholar 

  25. Stone, M.H.: Applications of the theory of Boolean rings to general topology. Trans. Amer. Math. Soc. 41(3), 375–481 (1937)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Morandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bezhanishvili, G., Morandi, P.J., Olberding, B. (2020). Specker Algebras: A Survey. In: Nguyen, H., Kreinovich, V. (eds) Algebraic Techniques and Their Use in Describing and Processing Uncertainty. Studies in Computational Intelligence, vol 878. Springer, Cham. https://doi.org/10.1007/978-3-030-38565-1_1

Download citation

Publish with us

Policies and ethics