Skip to main content

A Review on Ionic Liquids as Novel Absorbents for SO2 Removal

  • Chapter
  • First Online:
Environmental Processes and Management

Part of the book series: Water Science and Technology Library ((WSTL,volume 91))

Abstract

SO2 emissions are a significant source of atmospheric pollution. The natural sources such as biological decay and sea spray emit about 130 million tons of sulfur per year, and the anthropogenic sources such as coal combustion, petroleum, and smelting operations release an additional 132 million tons of sulfur dioxide annually into the atmosphere. The largest signal contribution to the anthropogenic emission of about 70% is made by coal combustion. The natural sources of sulfur dioxide are probably present in gases emitted all through the volcanic activity. Additionally, SO2 emissions contribute to the formation of smog, which is a significant human health concern. SO2 also induces an involuntary coughing reflex. The taste threshold limit is 0.3 ppm while SO2 produces an unpleasant smell at 0.5 ppm. However, the identification of a material that can selectively and reversibly capture SO2 has proven to be difficult. This paper critically discusses the recent advances of ionic liquids for SO2 capture, including the absorption capacity, desorption performance of various other absorbents like wet lime and wet limestone. In addition, some strategies recently developed to enhance the absorption processes have been briefly introduced, such as ionic liquid mixtures, solidified ionic liquids. Moreover, the drawbacks of the industrial application of this technology have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JL, Dixon JK, Maginn EJ, Brennecke JF (2006) Measurement of SO2 solubility in ionic liquids. J Phys Chem B 110(31):15059–15062

    Article  CAS  Google Scholar 

  • Angelo JB, Lightfoot EN, Howard DW (1966) Generalization of the penetration theory for surface stretch: Application to forming and oscillating drops. AIChE J 12:751–760

    Article  CAS  Google Scholar 

  • Arif A, Stephen C, Branken D, Everson R, Neomagus H, Piketh S (2015) Modeling wet flue gas desulfurization. In: Conference of the National Association for Clean Air (NACA 2015)

    Google Scholar 

  • Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater Nat Publ Group 8(8):621–629

    Article  CAS  Google Scholar 

  • Bates ED, Mayton RD, Ntai I, Davis JH (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124(6):926–927

    Article  CAS  Google Scholar 

  • Bhoi S, Banerjee T, Mohanty K (2016) Beneficiation of Indian coals using Ionic Liquids. Fuel Process Technol 151:1–10

    Article  CAS  Google Scholar 

  • Bicak N (2005) A new ionic liquid: 2-hydroxy ethylammonium formate. J Mol Liq 116(1):15–18

    Article  CAS  Google Scholar 

  • Bjerle I, Bengtsson S, Färnkvist K (1972) Absorption of SO2 in CaCO3-slurry in a laminar jet absorber. Chem Eng Sci 27(10):1853–1861

    Article  CAS  Google Scholar 

  • Bravo RV, Camacho RF, Moya VM, Garca LAI (2002) Desulphurization of SO2–N2 mixtures by limestone slurries. Chem Eng Sci 57:2047–2058

    Article  CAS  Google Scholar 

  • Cui G, Zhang F, Zhou X, Huang Y, Xuan X, Wang J (2015) Acylamido-based anion-functionalized ionic liquids for efficient so2 capture through multiple-site interactions. ACS Sustain Chem Eng 3(9):2264–2270

    Article  CAS  Google Scholar 

  • De Visscher A (2013) Air dispersion modeling: foundations and applications. Wiley

    Google Scholar 

  • Dou B, Byun YC, Hwang J (2008) Flue gas desulfurization with an electrostatic spraying absorber. Energy Fuels 22(2):1041–1045

    Article  CAS  Google Scholar 

  • Dou B, Pan W, Jin Q, Wang W, Li Y (2009) Prediction of SO2 removal efficiency for wet flue gas desulfurization. Energy Convers Manage Elsevier Ltd. 50(10):2547–2553

    Article  CAS  Google Scholar 

  • Duan E, Guo B, Zhang D, Shi L, Sun H, Wang Y (2011) Absorption of NO and NO2 in caprolactam tetrabutyl ammonium halide ionic liquids. Air Waste Manage Assoc 61(12):1393–1397

    Article  CAS  Google Scholar 

  • Duan E, Guo B, Zhang M, Yang B, Zhang D (2010) pH measurements of caprolactam tetrabutyl ammonium bromide ionic liquids in solvents. J Chem Eng Data 55:3278–3281

    Article  CAS  Google Scholar 

  • Gao X, Ding H, Du Z, Wu Z, Fang M, Luo Z, Cen K (2010) Gas-liquid absorption reaction between (NH4)2SO3 solution and SO2 for ammonia-based wet flue gas desulfurization. Appl Energy 87(8):2647–2651

    Article  CAS  Google Scholar 

  • Ghosh D, Lal S, Sarkar U (2017) Variability of tropospheric columnar NO2 and SO2 over eastern Indo-Gangetic Plain and impact of meteorology. Air Qual Atmos Health 10(5):565–574

    Article  CAS  Google Scholar 

  • Guo B, Duan E, Ren A, Wang Y, Liu H (2010) Solubility of SO2 in caprolactam tetrabutyl ammonium bromide ionic liquids. J Chem Eng Data 55(3):1398–1401

    Article  CAS  Google Scholar 

  • Guo B, Duan E, Zhong Y, Gao L, Zhang X, Zhao D (2011) Absorption and oxidation of H 2 S in caprolactam tetrabutyl ammonium bromide ionic liquid. Energy Fuels 25(1):159–161

    Article  CAS  Google Scholar 

  • Hallett JP, Welton T (1999) Room-temperature ionic liquids. solvents for synthesis and catalysis. Chem Rev 99(8):2071–2083

    Article  CAS  Google Scholar 

  • Hikita H, Asai S, Tsuji T (1978) Absorption of sulfur dioxide into aqueous ammonia and ammonium sulfite solutions. J Chem Eng Jpn 11(3):236–238

    Article  CAS  Google Scholar 

  • Huang J, Riisager A, Berg RW, Fehrmann R (2008) Tuning ionic liquids for high gas solubility and reversible gas sorption. J Mol Catal A Chem 279(2):170–176

    Article  CAS  Google Scholar 

  • Huang J, Riisager A, Wasserscheid P, Fehrmann R (2006) Reversible physical absorption of SO2 by ionic liquids. Chem Commun 38:4027–4029

    Article  CAS  Google Scholar 

  • Huang K, Lu JF, Wu YT, Hu XB, Zhang ZB (2013) Absorption of SO2 in aqueous solutions of mixed hydroxylammonium dicarboxylate ionic liquids. Chem Eng J 215–216:36–44

    Article  CAS  Google Scholar 

  • Huddleston JG, Willauer HD, Swatloski RP, Visser AE, Rogers RD (1998) Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction, 1765–1766

    Google Scholar 

  • Jiang L, Liguang BAI, Jiqin ZHU, Biaohua CHEN (2013) Thermodynamic Properties of Caprolactam Ionic Liquids. Chin J Chem Eng 21(7):766–769

    Article  CAS  Google Scholar 

  • Kalekar MS, Bhagwat SS (2006) Dynamic behavior of surfactants in solution. J Dispersion Sci Technol 27(7):1027–1034

    Article  CAS  Google Scholar 

  • Karatepe N (2000) A comparison of flue gas desulfurization processes. Energy Sources 22(3):197–206

    Article  Google Scholar 

  • Karousos DS, Kouvelos E, Sapalidis AA, Pohako K, Bahlmann M, Schulz PS, Wasserscheid P, Siranidi E, Vangeli O, Falaras P, Kanellopoulos NK, Romanos GE (2016) For acidic gas removal from flue gas novel inverse supported ionic liquid absorbents for acidic gas removal from flue gas

    Google Scholar 

  • Kinney ML, Schoch RM, Yonavjak L (2007) Environmental science: systems and solutions. Fourth edi. Jones and Bartlett Learning, Inc

    Google Scholar 

  • Lee KY, Kim CS, Kim H, Cheong M, Mukherjee DK, Jung KD (2010a) Effects of halide anions to absorb SO2 in ionic liquids. Bull Korean Chem Soc 31(7):1937–1940

    Article  CAS  Google Scholar 

  • Lee YK, Kim HS, Kim CS, Jung K (2010b) Behaviors of SO2 absorption in [BMIm][OAc] as an absorbent to recover SO2 in thermochemical processes to produce hydrogen. Int J Hydrogen Energy Elsevier Ltd. 35(19):10173–10178

    Article  CAS  Google Scholar 

  • Li W, Liu Y, Wang L, Gao G (2017) Using ionic liquid mixtures to improve the SO2 absorption performance in flue gas. Energy Fuels. https://doi.org/10.1021/acs.energyfuels.6b02884

    Article  CAS  Google Scholar 

  • Li X, Zhang L, Zheng Y, Zheng C (2015) Effect of SO2 on CO2 absorption in flue gas by ionic liquid 1-Ethyl-3-methylimidazolium acetate. Ind Eng Chem Res 54(34):8569–8578

    Article  CAS  Google Scholar 

  • Li X, Zhu C, Lu S (2013) Mass transfer of SO2 absorption with an instantaneous chemical reaction in a bubble column. Braz J Chem Eng 30(3):551–562

    Article  CAS  Google Scholar 

  • Liu B, Zhao J, Wei F (2013) Characterization of caprolactam based eutectic ionic liquids and their application in SO2 absorption. J Mol Liq 180(3):19–25

    Article  CAS  Google Scholar 

  • Liu SY, Xiao W De (2006) Modeling and simulation of a bubbling SO2 absorber with granular limestone slurry and an organic acid additive. Chem Eng Technol 29(10):1167–1173

    Article  CAS  Google Scholar 

  • Lu Z, Streets DG, de Foy B, Krotkov NA (2013) Ozone Monitoring Instrument observations of interannual increases in SO2 emissions from Indian coal-fired power plants during 2005–2012. Environ Sci Technol 47(24):13993–14000

    Article  CAS  Google Scholar 

  • Lu Z, Streets DG, Zhang Q, Wang S, Carmichael GR, Cheng YF, Tan Q (2010) Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000. Atmos Chem Phys 10(13):6311–6331

    Article  CAS  Google Scholar 

  • Lu Z, Zhang Q, Streets DG (2011) Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010. Atmos Chem Phys 11(18):9839–9864

    Article  CAS  Google Scholar 

  • Mohammadi M, Foroutan M (2014) Molecular investigation of SO2 gas absorption by ionic liquids: effects of anion type. J Mol Liq 193:60–68

    Article  CAS  Google Scholar 

  • Mondal MK (2007) Experimental determination of dissociation constant, Henry’s constant, heat of reactions, SO2 absorbed and gas bubble–liquid interfacial area for dilute sulphur dioxide absorption into water. Fluid Phase Equilib 253:98–107

    Article  CAS  Google Scholar 

  • Mondal A, Balasubramanian S (2016) Understanding SO2 capture by ionic liquids. J Phys Chem B 120(19):4457–4466

    Article  CAS  Google Scholar 

  • Noble RD, Gin DL (2011) Perspective on ionic liquids and ionic liquid membranes. J Membr Sci Elsevier BV 369(1–2):1–4

    Article  CAS  Google Scholar 

  • Pandey RA, Biswas R, Chakrabarti T, Devotta S (2005) Flue gas desulfurization: physicochemical and biotechnological approaches. Crit Rev Environ Sci Technol 35(6):571–622

    Article  CAS  Google Scholar 

  • Park HW, Park DW (2017) Removal kinetics for gaseous NO and SO2 by an aqueous NaClO2 solution mist in a wet electrostatic precipitator. Environ Technol 38(7):835–843

    Google Scholar 

  • Qu G, Zhang J, Li J, Ning P (2013) SO2 absorption/desorption characteristics of two novel phosphate ionic liquids. Sep Sci Technol 48(18):2876–2879

    Article  CAS  Google Scholar 

  • Ramachandran PA, Sharma MM (1969) Absorption with fast reaction in a slurry containing sparingly soluble fine particles. Chem Eng Sci 24(1):1681–1686

    Article  CAS  Google Scholar 

  • Ren S, Hou Y, Tian S, Wu W, Liu W (2012) Deactivation and regeneration of an ionic liquid during desulfurization of simulated flue gas. Ind Eng Chem Res 51(8):3425–3429

    Article  CAS  Google Scholar 

  • Ren S, Hou Y, Wn W, Liu Q, Xiao Y, Chen X (2010) Properties of ionic liquids absorbing SO2 and the mechanism of the absorption. J Phys Chem B 114(6):2175–2179

    Article  CAS  Google Scholar 

  • Ren S, Hou Y, Wu W, Jin M (2011) Oxidation of SO2 absorbed by an ionic liquid during desulfurization of simulated flue gases. Ind Eng Chem Res 50(2):998–1002

    Article  CAS  Google Scholar 

  • Rennie J, Evans F (1962) The formation of froth and foams above sieve plates. Br Chem Eng 7:498

    Google Scholar 

  • Romanos GE, Schulz PS, Bahlmann M, Wasserscheid P, Sapalidis A, Katsaros FK, Athanasekou CP, Beltsios K, Kanellopoulos NK (2014) CO2 capture by novel supported ionic liquid phase systems consisting of silica nanoparticles encapsulating amine-functionalized ionic liquids

    Google Scholar 

  • Sada E, Kumazawa H, Butt MA (1977) Simultaneous absorption of three, reacting gases 13:225–231

    Google Scholar 

  • Sada E, Kumazawa H, Butt MA (1979) Chemical absorption into a finite slurry. Chem Eng Sci 34(5):715–718

    Article  CAS  Google Scholar 

  • Sada E, Kumazawa H, Hashizume I (1983) Chemical absorption of two gases into a slurry containing fine catalyst particles. Chem Eng J 26(3):239–244

    Article  CAS  Google Scholar 

  • Sada E, Kumazawa H, Hashizume I, Kamishima M (1981) Desulfurization by limestone slurry with added magnesium sulfate. Chem Eng J 22(2):133–141

    Article  CAS  Google Scholar 

  • Shang Y, Li H, Zhang S, Xu H, Wang Z, Zhang L, Zhang J (2011) Guanidinium-based ionic liquids for sulfur dioxide sorption Chem Eng J Elsevier BV 175(1):324–329

    Google Scholar 

  • Shiflett MB, Yokozeki A (2009) Separation of carbon dioxide and sulfur dioxide using room-temperature ionic liquid [bmim][MeSO4]. Energy Fuels 24(2):1001–1008

    Article  CAS  Google Scholar 

  • Shiflett MB, Yokozeki A (2010) Chemical absorption of sulfur dioxide in room-temperature ionic liquids. Ind Eng Chem Res 49(3):1370–1377

    Article  CAS  Google Scholar 

  • Tang Z, Zhou C, Chen C (2004) Studies on flue gas desulfurization by chemical absorption using an ethylenediamine. Phosphoric Acid Solut: 6714–6722

    Google Scholar 

  • Tian S, Hou Y, Wu W, Ren S, Qian J (2014) Hydrophobic task-specific ionic liquids: synthesis, properties and application for the capture of SO2. J Hazard Mater 278:409–416

    Article  CAS  Google Scholar 

  • Uchida S, Koide K, Shindo M (1975) Gas absorption with fast reaction into a slurry containing fine particles. Chem Eng Sci 30(5–6):644–646

    Article  CAS  Google Scholar 

  • Wang LK, Williford C, Chen WY (2005) Desulfurization and emissions control. In: Advanced Air and Noise Pollution Control, Humana Press, pp 35–95

    Google Scholar 

  • Wu W, Han B, Gao H, Liu Z, Jiang T, Huang J (2004) Desulfurization of flue gas: SO2 absorption by an ionic liquid. Angewandte Chemie Int Edn 43(18):2415–2417

    Article  CAS  Google Scholar 

  • Yang Z, Pan W (2005) Ionic liquids: green solvents for nonaqueous biocatalysis. Enzyme Microbial Technol 37(1):19–28

    Article  CAS  Google Scholar 

  • Yuan XL, Zhang SJ, Lu XM (2007) Hydroxyl ammonium ionic liquids: synthesis, properties, and solubility of so2. J Chem Eng Data 52(2):596–599

    Article  CAS  Google Scholar 

  • Zeng S, Gao H, Zhang X, Dong H, Zhang X, Zhang S (2014) Efficient and reversible capture of SO2 by pyridinium-based ionic liquids. Chem Eng J 251:248–256

    Article  CAS  Google Scholar 

  • Zhai L, Zhong Q, He C, Wang J (2010) Hydroxyl ammonium ionic liquids synthesized by water-bath microwave: synthesis and desulfurization. J Hazardous Mater Elsevier BV 177(1–3):807–813

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avanish Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A. (2020). A Review on Ionic Liquids as Novel Absorbents for SO2 Removal. In: Singh, R., Shukla, P., Singh, P. (eds) Environmental Processes and Management. Water Science and Technology Library, vol 91. Springer, Cham. https://doi.org/10.1007/978-3-030-38152-3_15

Download citation

Publish with us

Policies and ethics