Skip to main content

Cognitive Dynamics of Research Routines: Case Study of MicroRNA

  • Chapter
  • First Online:
The Logic of Social Practices

Abstract

The paper develops evolutionary approach to study research routines in order to identify some general patterns in this prevalent area of social practice. Three mechanisms underlying cognitive dynamics of research routines are identified and examined using the case of microRNAs research. Their mutual interaction is attributed to propagation of shock impulses. Some inherent limitations of alternative scientometric approaches, such as the gradient of flow vergence, are examined. They presumably arise because of the particularistic orientation of the dominant scientometric approaches. The paper concludes by advocating processualist approach to dynamics of scientific research and postulating a more detailed examination of the nature of shock impulses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    More fully discussed in [27].

  2. 2.

    I adopt here the terminological distinctions developed in the debate between proponents of particularist and processualist anthropology (see esp. [10, 11]).

  3. 3.

    A general and forceful case for the processualist turn in the philosophy of life sciences has recently been presented in [39].

  4. 4.

    If one adopts John Losee’s broad classification of philosophical approaches to scientific progress into incremental and discontinuous [37, p. 1], then obviously the general processualist approach inclines towards the incremental one that would presumably accommodate research routines as the favorable unit of analysis.

  5. 5.

    For the details concerning how the values of Simonton’s measures are determined see e.g. [49].

  6. 6.

    The interested Reader may consult [5] for details of the Gompertz function.

  7. 7.

    In 1984 both Ambros and Ruvkun moved out to head their own laboratories.

  8. 8.

    “MeSH” stands for “Medical Subject Headings” and is systematically developed and updated for indexing articles in PubMed. It identifies 16 synonyms for “microRNA”.

References

  1. Allen, E., Zhixin, X., Gustafson, A.M., Carrington, J.C.: MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121(2), 207–221 (2005). https://doi.org/10.1016/j.cell.2005.04.004

    Article  Google Scholar 

  2. Almeida, M.I., Rui, M.R., Calin, G.A.: MicroRNA history: discovery, recent applications, and next frontiers. Mutat. Res. 717(1–2), 1–8 (2011). https://doi.org/10.1016/j.mrfmmm.2011.03.009

    Article  Google Scholar 

  3. Ambros, V.: A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell 57(1), 49–57 (1989). https://doi.org/10.1016/0092-8674(89)90171-2

    Article  Google Scholar 

  4. Ambros, V.: The functions of animal microRNAs. Nature 431(7006), 350–355 (2004). https://doi.org/10.1038/nature02871

    Article  Google Scholar 

  5. Andersen, J.P., Hammarfelt, B.: Price revisited: on the growth of dissertations in eight research fields. Scientometrics 88(2), 371–383 (2011). https://doi.org/10.1007/s11192-011-0408-8

    Article  Google Scholar 

  6. Avise, C.: Conceptual Breakthroughs in Evolutionary Genetics: A Brief History of Shifting Paradigms. Elsevier, Amsterdam (2014)

    Google Scholar 

  7. Bartel, D.P.: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2), 281–297 (2004). https://doi.org/10.1016/S0092-8674(04)00045-5

    Article  Google Scholar 

  8. Bernal, J.D.: The Social Function of Science. Routledge, London (1939)

    Google Scholar 

  9. Bhaskaran, M., Mohan, M.: MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Vet. Pathol. 51(4), 759–774 (2014). https://doi.org/10.1177/0300985813502820

    Article  Google Scholar 

  10. Binford, L.R.: Archaeology as anthropology. Am. Antiq. 28(2), 217–225 (1962). https://doi.org/10.2307/278380

    Article  Google Scholar 

  11. Buettner-Janusch, John: Boas and Mason: Particularism versus generalization. Am. Anthropol. 59(2), 318–324 (1957)

    Article  Google Scholar 

  12. Calin, G.A., Dumitru, C.D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., et al.: Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. 99(24), 15524–15529 (2002). https://doi.org/10.1073/pnas.242606799

    Article  Google Scholar 

  13. Calin, G.A., Croce, C.M.: MicroRNA signatures in human cancers. Nat. Rev. Cancer 6(11), 857–866 (2006). https://doi.org/10.1038/nrc1997

    Article  Google Scholar 

  14. Campbell, D.T.: Blind variation and selective retentions in creative thought as in other knowledge processes. Psychol. Rev. 67(6), 380–400 (1960). https://doi.org/10.1037/h0040373

    Article  Google Scholar 

  15. de Solla Price, D.J.: Quantitative measures of the development of science. Arch. Int. d’Histoire Sci. 14, 85–93 (1951)

    Google Scholar 

  16. de Solla Price, D.J.: Networks of scientific papers. Science 149(3683), 510–515 (1965). https://doi.org/10.1126/science.149.3683.510

    Article  Google Scholar 

  17. de Solla Price, D.J.: Little Science, Big Science—And Beyond. Columbia University Press, New York (1986)

    Google Scholar 

  18. Gitschier, J.: In the tradition of science: an interview with Victor Ambros. PLoS Genet. 6(3), 1–4 (2010). https://doi.org/10.1371/journal.pgen.1000853

    Article  Google Scholar 

  19. Hacking, I.: The Social Construction of What?. Harvard University Press, Cambridge, MA (1999)

    Google Scholar 

  20. Horvitz, H.R., Sulston, J.E.: Isolation and genetic characterization of cell-lineage mutants of the nematode caenorhabditis elegans. Genetics 96(2), 435–454 (1980)

    Google Scholar 

  21. Hoyningen-Huene, P.: Context of discovery versus context of justification and Thomas Kuhn. In: Schickore, J., Steinle, F. (eds.) Revisiting discovery and justification: historical and philosophical perspectives on the context distinction, pp. 119–131. Springer, Dordrecht (2006). https://doi.org/10.1007/1-4020-4251-5_8

    Chapter  Google Scholar 

  22. Ippoliti, E.: Scientific discovery reloaded. Topoi (2017). https://doi.org/10.1007/s11245-017-9531-3

  23. Ippoliti, E.: Building theories the heuristic way. In: Danks, D., Ippoliti, E. (eds.) Building Theories, pp. 3–20. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72787-5_1

    Chapter  Google Scholar 

  24. Jarroux, J., Morillon, A., Pinskaya, M.: History, discovery, and classification of lncRNAs. In: Rao, M.R.S. (ed.) Long Non Coding RNA Biology, pp. 1–46. Springer Singapore, Singapore (2017). https://doi.org/10.1007/978-981-10-5203-3_1

    Chapter  Google Scholar 

  25. Kawalec, P.: Towards an evolutionary model of science dynamics: generation and production of scientific knowledge. Zagadnienia Naukoznawstwa 53(4), 405–428 (2017). https://doi.org/10.24425/118035

    Google Scholar 

  26. Kawalec, P.: Philosophical perspectives: the science of science—from inception to maturity. In: Friedrich, C., Kleeberg, B. (eds.) A New Organon: Science Studies in Interwar Poland, pp. 521–535. Mohr Siebeck, Tübingen (2020)

    Google Scholar 

  27. Kawalec, P.: Integrative methodology: a study of dynamics of scientific knowledge. [in Polish]. Wydawnictwo KUL, Lublin (2018)

    Google Scholar 

  28. Kawalec, P.: Transformations in breakthrough research: the emergence of Mirnas as a research routine in molecular biology. Open Inf. Sci. 2(1), 127–146 (2018). https://doi.org/10.1515/opis-2018-0010

    Article  Google Scholar 

  29. Kota, J., Chivukula, R.R., O’Donnell, K.A., Wentzel, E.A., Montgomery, C.L., Hwang, H.-W., Chang, T.-C., et al.: Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137(6), 1005–1017 (2009). https://doi.org/10.1016/j.cell.2009.04.021

    Article  Google Scholar 

  30. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., Tuschl, T.: Identification of novel genes coding for small expressed RNAs. Science 294(5543), 853–858 (2001). https://doi.org/10.1126/science.1064921

    Article  Google Scholar 

  31. Langley, P. (ed.): Scientific discovery: computational explorations of the creative processes. MIT Press, Cambridge, MA (1987)

    Google Scholar 

  32. Lau, N.C., Lee, L.P., Weinstein, E.G., Bartel, D.P.: An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543), 858–862 (2001). https://doi.org/10.1126/science.1065062

    Article  Google Scholar 

  33. Lee, R.C., Ambros, V.: An extensive class of small RNAs in Caenorhabditis elegans. Science 294(5543), 862–864 (2001). https://doi.org/10.1126/science.1065329

    Article  Google Scholar 

  34. Lee, R.C., Feinbaum, R.L., Ambros, V.: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5), 843–854 (1993). https://doi.org/10.1016/0092-8674(93)90529-y

    Article  Google Scholar 

  35. Lee, Y.S., Dutta, A.: MicroRNAs in Cancer. Annu. Rev. Pathol. 4(1), 199–227 (2009). https://doi.org/10.1146/annurev.pathol.4.110807.092222

    Article  Google Scholar 

  36. Liu, Z.C., Ambros, V.: Heterochronic genes control the stage-specific initiation and expression of the dauer larva developmental program in Caenorhabditis elegans. Genes Dev. 3(128), 2039–2049 (1989). https://doi.org/10.1101/gad.3.12b.2039

    Article  Google Scholar 

  37. Losee, J.: Theories of Scientific Progress: An Introduction. Routledge, London (2003)

    Google Scholar 

  38. Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., et al.: MicroRNA expression profiles classify human cancers. Nature 435(7043), 834–838 (2005). https://doi.org/10.1038/nature03702

    Article  Google Scholar 

  39. Nicholson, D.J., Dupré, J. (eds.): Everything Flows: Towards a Processual Philosophy of Biology. Oxford University Press, Oxford (2018)

    Google Scholar 

  40. Nickles, T.: Scientific discovery as a topic for philosophy of science: some personal reflections. Topoi (2018). https://doi.org/10.1007/s11245-018-9566-0

  41. Ossowska, M., Ossowski, S.: Nauka o nauce. Nauka Polska 20, 1–12 (1935)

    Google Scholar 

  42. Ossowska, M., Ossowski, S.: The science of science. Minerva 3(1), 72–82 (1964)

    Article  Google Scholar 

  43. Pasquinelli, A.E., Reinhart, B.J., Slack, F., Martindale, M.Q., Kuroda, M.I., Maller, B., Hayward, D.C., et al.: Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408(6808), 86–89 (2000)

    Article  Google Scholar 

  44. Popper, K.: The Logic of Scientific Discovery, 2nd edn. Routledge, London (2002)

    Google Scholar 

  45. Prabhakaran, T., Lathabai, H.H., George, S., Changat, M.: Towards prediction of paradigm shifts from scientific literature. Scientometrics 117(3), 1611–1644 (2018). https://doi.org/10.1007/s11192-018-2931-3

    Article  Google Scholar 

  46. Schickore, J.: Scientific discovery. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Summer 2018 edn. https://plato.stanford.edu/archives/sum2018/entries/scientific-discovery

  47. Simon, H.A.: Models of Discovery and Other Topics in the Methods of Science. Springer, Dordrecht (1977)

    Book  Google Scholar 

  48. Simonton, D.K.: Creativity and discovery as blind variation: Campbell’s (1960) BVSR model after the half-century mark. Rev. Gen. Psychol. 15(2), 158–174 (2011). https://doi.org/10.1037/a0022912

    Article  Google Scholar 

  49. Simonton, D.K.: Combinatorial creativity and sightedness: Monte Carlo simulations using three-criterion definitions. Int. J. Creat. Probl. Solving 22(2), 5–18 (2012)

    Google Scholar 

  50. Simonton, D.K.: On praising convergent thinking: Creativity as blind variation and selective retention. Creat. Res. J. 27(3), 262–270 (2015). https://doi.org/10.1080/10400419.2015.1063877

    Article  Google Scholar 

  51. Small, H., Boyack, K.W., Klavans, R.: Identifying emerging topics in science and technology. Res. Policy 43(8), 1450–1467 (2014). https://doi.org/10.1016/j.respol.2014.02.005

    Article  Google Scholar 

  52. Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J.J., Lötvall, J.O.: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9(6), 654–659 (2007). https://doi.org/10.1038/ncb1596

    Article  Google Scholar 

  53. van Fraassen, B.C.: Modeling and measurement: the criterion of empirical grounding. Philos. Sci. 79(5), 773–784 (2012). https://doi.org/10.1086/667847

    Article  Google Scholar 

  54. Volinia, S., Calin, G.A., Liu, C.-G., Ambs, S., Cimmino, A., Petrocca, F., Visone, R., et al.: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. U.S.A. 103(7), 2257–2261 (2006). https://doi.org/10.1073/pnas.0510565103

    Article  Google Scholar 

  55. Weisberg, R.W.: Creativity: Understanding Innovation in Problem Solving, Science, Invention, and the Arts. Wiley, New York (2006)

    Google Scholar 

  56. Wightman, B., Ha, I., Ruvkun, G.: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5), 855–862 (1993). https://doi.org/10.1016/0092-8674(93)90530-4

    Article  Google Scholar 

  57. Znaniecki, F.: Przedmiot i zadania nauki o wiedzy. Nauka Polska 5, 1–78 (1925)

    Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the support of the Polish National Science Centre (NCN) under the grant no. UMO-2014/15/B/HS1/03770.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Kawalec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kawalec, P. (2020). Cognitive Dynamics of Research Routines: Case Study of MicroRNA. In: Giovagnoli, R., Lowe, R. (eds) The Logic of Social Practices. Studies in Applied Philosophy, Epistemology and Rational Ethics, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-030-37305-4_9

Download citation

Publish with us

Policies and ethics