Skip to main content

Plasma-Assisted Molecular Beam Epitaxy 1

Growth, Doping, and Heterostructures

  • Chapter
  • First Online:
Gallium Oxide

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 293))

Abstract

Plasma-assisted molecular beam epitaxy has been used to grow the highest quality β-Ga2O3 thin films and has shown potential to realize various efficient device structures. Growth of β-Ga2O3 is defined by the suboxide desorption that limits growth rates at high temperatures and Ga fluxes. Growth in various orientations has been demonstrated with the (010) b-plane in particular showing promise for homoepitaxy due to high realized growth rates and materials quality. N-type doping with Sn, Ge, and Si has allowed for device structures that utilize electron conduction in this materials system. Heterostructures with β-(AlxGa1-x)2O3 have been used for modulation doped field effect transistors; however, thermodynamic limitations of maximum achievable Al content have limited device performance. Expanding the growth regime through metal-oxide catalyzed epitaxy using In could help improve heterostructure growth for future devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.Y. Tsai, O. Bierwagen, M.E. White, J.S. Speck, J. Vac. Sci. Technol. A 28, 354 (2010)

    Google Scholar 

  2. E. Ahmadi, O.S. Koksaldi, S.K. Kaun, Y. Oshima, D.B. Short, U.K. Mishra, J.S. Speck, Appl. Phys. Express 10, 041102 (2017)

    Article  Google Scholar 

  3. Y. Oshima, E. Ahmadi, S. Kaun, F. Wu, J.S. Speck, Semicond. Sci. Technol. 33, 015013 (2018)

    Article  Google Scholar 

  4. G. Koblmuller, F. Wu, T. Mates, J.S. Speck, Appl. Phys. Lett. 91, 221905 (2007)

    Article  Google Scholar 

  5. M.A. Liebermann, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 2005)

    Book  Google Scholar 

  6. E. Stoffels, W.W. Stoffels, D. Vender, M. Kando, G.M.W. Kroesen, F.J. de Hoog, Phys. Rev. E 51, 2425 (1995)

    Article  CAS  Google Scholar 

  7. M.Y. Tsai, Dissertation (University of Califronia, Santa Barbara, 2010)

    Google Scholar 

  8. S. Fernandez-Garrido, G. Koblmuller, E. Calleja, J.S. Speck, J. Appl. Phys. 104, 033541 (2008)

    Article  Google Scholar 

  9. H. Okumura, M. Kita, K. Sasaki, A. Kuramata, M. Higashiwaki, J.S. Speck, Appl. Phys. Express 7, 9 (2014)

    Google Scholar 

  10. P. Vogt, O. Bierwagen, Appl. Phys. Lett. 106, 081910 (2015)

    Article  Google Scholar 

  11. E.G. Villora, K. Shimamura, K. Kitamura, K. Aoki, Appl. Phys. Lett. 88, 031105 (2006)

    Article  Google Scholar 

  12. M.Y. Tsai, M.E. White, J.S. Speck, J. Cryst. Growth 310, 4256 (2008)

    Article  CAS  Google Scholar 

  13. T. Oshima, N. Arai, N. Suzuki, S. Ohira, S. Fujita, Thin Solid Films 516, 5768 (2008)

    Article  CAS  Google Scholar 

  14. Z. Cheng, M. Hanke, Z. Galazka, A. Trampert, Nanotechnology 29, 39570 (2018)

    Google Scholar 

  15. R. Schewski, M. Baldini, K. Irmscher, A. Fiedler, T. Markurt, B. Neushulz, T. Remmele, T. Schulz, G. Wagner, Z. Galazka, M. Albrecht, J. Appl. Phys. 120, 225308 (2016)

    Article  Google Scholar 

  16. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Appl. Phys. Lett. 100, 013504 (2012)

    Article  Google Scholar 

  17. K. Sasaki, A. Kuramata, T. Masui, E.G. Villora, K. Shimamura, S. Yamakoshi, Appl. Phys. Express 5, 035502 (2012)

    Article  Google Scholar 

  18. J.M. LeBeau, R. Engel-Herbert, B. Jalan, J. Cagnon, P. Moetakef, S. Stemmer, Appl. Phys. Let. 95, 142905 (2009)

    Article  Google Scholar 

  19. E. Ahmadi, Y. Oshima, F. Wu, J.S. Speck, Semicond. Sci. Technol. 32, 035004 (2017)

    Article  Google Scholar 

  20. E. Ahmadi, O.S. Koksaldi, X. Zheng, T. Mates, Y. Oshima, U.K. Mishra, J.S. Speck, Appl. Phys. Express 10, 07110 (2017)

    Google Scholar 

  21. S.H. Han, A. Mauze, E. Ahmadi, T. Mates, Y. Oshima, J.S. Speck, Semicond. Sci. Technol. 33, 0450001 (2018)

    Google Scholar 

  22. H. Paelaars, C.G. Van de Walle, Phys. Status Solidi B 252, 4 (2015)

    Google Scholar 

  23. Y. Kang, K. Krishnaswamy, H. Peelaers, C.G. Van de Walle, J. Phys.: Condens. Matter 29, 234001 (2017)

    Google Scholar 

  24. K. Ghosh, U. Singisetti, Mater. Res. 32, 4142 (2017)

    Article  CAS  Google Scholar 

  25. J.B. Varley, J.R. Weber, A. Janotti, C.G. Van de Walle, Appl. Phys. Lett. 97, 142106 (2010)

    Article  Google Scholar 

  26. S. Krishamoorthy, Z. Xia, S. Bajaj, M. Brenner, S. Rajan, Appl. Phys. Express 10, 051102 (2017)

    Article  Google Scholar 

  27. S. Krishamoorthy, Z. Xia, C. Joishi, Y. Zhang, J. McGlone, J. Johnson, M. Brenner, A. Arehart, J. Hwang, S. Lodha, S. Rajan, Appl. Phys. Lett. 111, 023502 (2017)

    Article  Google Scholar 

  28. S.W. Kaun, F. Wu, J.S. Speck, J. Vac. Sci. Technol. A 33, 041508 (2015)

    Google Scholar 

  29. Y. Oshima, E. Ahmadi, S.C. Bedescu, F. Wu, J.S. Speck, Appl. Phys. Express 9, 061102 (2016)

    Article  Google Scholar 

  30. V.G. Hill, R. Rustom, E.F. Osborn, J. Am. Ceram. Soc. 35, 135 (1952)

    Article  CAS  Google Scholar 

  31. H. Peelaers, J.B. Varley, J.S. Speck, C.G. Van de Walle, Appl. Phys. Lett. 112, 242101 (2018)

    Article  Google Scholar 

  32. P. Vogt, O. Brandt, H. Riechert, J. Lahnemann, O. Bierwagen, Phys. Rev. Lett. 119, 196001 (2017)

    Article  Google Scholar 

  33. P. Vogt, A. Mauze, F. Wu, B. Bonef, J.S. Speck, Appl. Phys. Express 11, 11 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhil Mauze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mauze, A., Speck, J. (2020). Plasma-Assisted Molecular Beam Epitaxy 1. In: Higashiwaki, M., Fujita, S. (eds) Gallium Oxide. Springer Series in Materials Science, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-030-37153-1_5

Download citation

Publish with us

Policies and ethics