Skip to main content

Vertical Bridgman Growth Method

  • Chapter
  • First Online:
Gallium Oxide

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 293))

  • 2632 Accesses

Abstract

The vertical Bridgman (VB) technique developed for β-Ga2O3 crystals will be introduced including specific details on the VB crucible material determined by the measurement of the melting temperature of β-Ga2O3 and the VB growth processes of β-Ga2O3 in ambient air. The characteristic features of the crystallinity and the tentative electric characteristics of β-Ga2O3 crystals grown by the VB technique will also be introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Appl. Phys. Lett. 100, 013504 (2012)

    Article  Google Scholar 

  2. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Phys. Status Solidi A, (1), 21 (2014)

    Google Scholar 

  3. T. Oishi, Y. Koga, K. Harada, M. Kasu, Appl. Phys. Express 8, 031101 (2015)

    Article  CAS  Google Scholar 

  4. M. Baldini, Z. Galazka, G. Wagner, Mater. Sci. Semicond. Process. 78, 132 (2018)

    Article  CAS  Google Scholar 

  5. S. Fujita, Jpn. J. Appl. Phys. 54, 030101 (2015)

    Article  Google Scholar 

  6. M. Higashiwaki, H. Murakami, Y. Kumagai, A. Kuramata, Jpn. J. Appl. Phys. 55, 1202A1 (2016)

    Google Scholar 

  7. T. Hibiya, K. Hoshikawa, in Bulk Crystal Growth of Electronic, Optical and Optoelectonic Materials, ed. P. Capper (Wiley, 2005), pp. 1–42

    Google Scholar 

  8. J. Friedrich, W. Ammon, G. Muller, in Bulk Crystal Growth: Basic Techniques, ed. by P. Rudolph (Elsevier, 2015), pp. 45–104

    Google Scholar 

  9. A. Muizunieks, J. Virbulis, A. Ludge, H. Riemann, N. Werner, in Bulk Crystal Growth: Basic Techniques, ed. by P. Rudolph (Elsevier, 2015), pp. 241–279

    Google Scholar 

  10. T.S. Sudarshan, D. Cherednichenko, R. Yakimova, in Bulk Crystal Growth of Electronic, Optical and Optoelectonic Materials, ed. by P. Capper (Wiley, 2005), pp. 433–449

    Google Scholar 

  11. D. Hofmann, M.H. Müller, Mater. Sci. Eng. B61–62, 29 (1999)

    Article  Google Scholar 

  12. H. Daikoku, M. Kado, H. Sakamoto, H. Suzuki, T. Bessho, K. Kusunoki, N. Yashiro, N. Okada, K. Moriguchi, K. Kamei, Mater. Sci. Forum 717–720, 61 (2012)

    Article  Google Scholar 

  13. K. Kusunoki, N. Okada, K. Kamei, K. Moriguchi, H. Daikoku, M. Kado, H. Sakamoto, T. Bessho, T. Ujihara, J. Cryst. Growth 395, 68 (2014)

    Article  CAS  Google Scholar 

  14. K. Hoshikwa, E. Ohba, T. Kobayashi, J. Yanagisawa, C. Miyagawa, Y. Nakamura, J. Cryst. Growth 447, 36 (2016)

    Article  Google Scholar 

  15. E. Ohba, T. Kobayashi, M. Kado, K. Hoshikwa, Jpn. J. Appl. Phys. 55, 1202BF (2016)

    Google Scholar 

  16. N. Ueda, H. Hosono, R. Waseda, H. Kawazoe, Appl. Phys. Lett. 70(26), 3561 (1997)

    Article  CAS  Google Scholar 

  17. E.G. Víllora, K. Shimamura, Y. Yoshikawa, K. Aoki, N. Ichinose, J. Cryst. Growth 270, 420 (2004)

    Article  Google Scholar 

  18. E.G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, K. Aoki, Appl. Phys. Lett. 92, 202120 (2008)

    Article  Google Scholar 

  19. Y. Tomm, P. Reiche, D. Klimm, T. Fukuda, J. Cryst. Growth 220, 510 (2000)

    Article  CAS  Google Scholar 

  20. Z. Galazka, R. Uecker, K. Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Brützam, R. Bertram, S. Ganschow, R. Fornari, Cryst. Res. Technol. 45(12), 1229 (2010)

    Article  CAS  Google Scholar 

  21. Z. Galazka, K. Irmscher, R. Uecker, R. Bertram, M. Pietsch, A. Kwasniewski, M. Naumann, T. Schulz, R. Schewski, D. Klimm, M. Bickermann, J. Cryst. Growth 404, 184 (2014)

    Article  CAS  Google Scholar 

  22. H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, Y. Yaguchi, Jpn. J. Appl. Phys. 47, 8506 (2008)

    Article  CAS  Google Scholar 

  23. E.G. Víllora, S. Arjoca, K. Shimamura, D. Inomata, K. Aoki, Proc. SPIE, 89871U (2014)

    Google Scholar 

  24. D. Klimm, S. Ganschow, D. Bertram, R. Uecker, P. Reiche, R. Fornari, J. Cryst. Growth 311, 534 (2009)

    Article  CAS  Google Scholar 

  25. Z. Galazka, R. Uecker, D. Klimm, K. Irmscher, M. Naumann, M. Pietsch, A. Kwasniewski, R. Bertram, S. Ganschow, M. Bickermann, ECS J. Solid State Sci. Technol. 6(2), Q3007 (2017)

    Article  CAS  Google Scholar 

  26. A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, S. Yamakoshi, Jpn. J. Appl. Phys. 55, 1202A2 (2016)

    Google Scholar 

  27. K. Nakai, T. Nagai, K. Noami, T. Futagi, Jpn. J. Appl. Phys. 54, 051103 (2015)

    Article  Google Scholar 

  28. K. Hanada, T. Moribayashi, T. Uematsu, S. Masuya, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, M. Kasu, Jpn. J. Appl. Phys. 55, 030303 (2016)

    Article  Google Scholar 

  29. A.V. Zhdanov, G.A. Satunkin, V.A. Tatarchenko, N.N. Talyanskaya, J. Cryst. Growth 49, 659 (1980)

    Article  CAS  Google Scholar 

  30. V.A. Tatarchenko, J. Cryst. Growth 143, 294 (1994)

    Article  CAS  Google Scholar 

  31. K. Wada, K. Hoshikawa, Jpn. J. Appl. Phys. 17(2), 449 (1978)

    Article  CAS  Google Scholar 

  32. V.A. Tatarchenko, T.N. Yalovets, G.A. Satunkin, L.M. Zatulovsky, L.P. Egorov, D.Y. Kravetsky, J. Cryst. Growth 50, 335 (1980)

    Article  CAS  Google Scholar 

  33. K. Sasaki, A. Kuramata, T. Masui, E.G. Víllora, K. Shimamura, S. Yamakoshi, Appl. Phys. Express 5, 035502 (2012)

    Article  Google Scholar 

  34. S. Geller, J. Chem. Phys. 33(3), 676 (1960)

    Article  CAS  Google Scholar 

  35. G. Katz, R. Roy, J. Am. Ceram. Soc. 49(3), 168 (1966)

    Article  CAS  Google Scholar 

  36. J. Åhman, G. Svensson, J. Albertsson, Acta Crystallogy. Sect. C C52, 1336 (1996)

    Google Scholar 

  37. T. Onuma, S. Fujioka, Y. Yamaguchi, M. Higashiwaki, K. Sasaki, T. Masui, T. Honda, Appl. Phys. Lett. 103, 041910 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keigo Hoshikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hoshikawa, K. (2020). Vertical Bridgman Growth Method. In: Higashiwaki, M., Fujita, S. (eds) Gallium Oxide. Springer Series in Materials Science, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-030-37153-1_3

Download citation

Publish with us

Policies and ethics