Skip to main content

Halide Vapor Phase Epitaxy 1

Homoepitaxial Growth of β-Ga2O3 on β-Ga2O3 Substrates

  • Chapter
  • First Online:
Gallium Oxide

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 293))

Abstract

Homoepitaxial growth of β-Ga2O3 on β-Ga2O3 substrates by halide vapor-phase epitaxy (HVPE) using GaCl and O2 was investigated by both thermodynamic analysis and growth experiments. The thermodynamic analysis clarified that growth of Ga2O3 is expected at high temperatures around 1000 °C using an inert carrier gas. The experimental results revealed that homoepitaxial growth of unintentionally doped (UID) layers with a low effective donor concentration (NdNa) of less than 1013 cm−3 is possible at 1000 °C on β-Ga2O3 (001) substrates with a high growth rate of up to 28 μm/h. Furthermore, HVPE growth of intentionally Si-doped β-Ga2O3 layers was investigated by supplying SiCl4, which revealed that n-type carrier density almost equal to the Si-doping concentration can be controlled in the range of 1015–1018 cm−3. The carrier mobility decreased with increasing Si impurity concentration and was about 150 cm2/V·s at room temperature for a layer with a carrier density of 3.2 × 1015 cm−3. Thus, the intentionally Si-doped homoepitaxial layers grown on β-Ga2O3 substrates can be applicable for the production of β-Ga2O3-based power devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Tomm, P. Reiche, D. Klimm, T. Fukuda, J. Cryst. Growth 220, 510 (2000)

    Article  CAS  Google Scholar 

  2. Z. Galazka, R. Uecker, K. Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Brützam, R. Bertram, S. Ganschow, R. Fornari, Cryst. Res. Technol. 45, 1229 (2010)

    Article  CAS  Google Scholar 

  3. E.G. Víllora, K. Shimamura, Y. Yoshikawa, K. Aoki, N. Ichinose, J. Cryst. Growth 270, 420 (2004)

    Article  Google Scholar 

  4. K. Hoshikawa, E. Ohba, T. Kobayashi, J. Yanagisawa, C. Miyagawa, Y. Nakamura, J. Cryst. Growth 447, 36 (2016)

    Article  CAS  Google Scholar 

  5. H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, Y. Yaguchi, Jpn. J. Appl. Phys. 47, 8506 (2008)

    Article  CAS  Google Scholar 

  6. A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, S. Yamakoshi, Jpn. J. Appl. Phys. 55, 1202A2 (2016)

    Article  Google Scholar 

  7. T. Oshima, N. Arai, N. Suzuki, S. Ohira, S. Fujita, Thin Solid Films 516, 5768 (2008)

    Article  CAS  Google Scholar 

  8. K. Sasaki, A. Kuramata, T. Masui, E.G. Víllora, K. Shimamura, S. Yamakoshi, Appl. Phys. Express 5, 035502 (2012)

    Article  Google Scholar 

  9. H. Okumura, M. Kita, K. Sasaki, A. Kuramata, M. Higashiwaki, J.S. Speck, Appl. Phys. Express 7, 095501 (2014)

    Article  Google Scholar 

  10. S. Lee, K. Kaneko, S. Fujita, Jpn. J. Appl. Phys. 55, 1202B8 (2016)

    Article  Google Scholar 

  11. G. Wagner, M. Baldini, D. Gogova, M. Schmidbauer, R. Schewski, M. Albrecht, Z. Galazka, D. Klimm, R. Fornari, Phys. Status Solidi A 211, 27 (2014)

    Article  CAS  Google Scholar 

  12. X. Du, W. Mi, C. Luan, Z. Li, C. Xia, J. Ma, J. Cryst. Growth 404, 75 (2014)

    Article  CAS  Google Scholar 

  13. M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, R. Schewski, G. Wagner, ECS J. Solid State Sci. Technol. 6, Q3040 (2017)

    Article  CAS  Google Scholar 

  14. K. Nomura, K. Goto, R. Togashi, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, A. Koukitu, J. Cryst. Growth 405, 19 (2014)

    Article  CAS  Google Scholar 

  15. H. Murakami, K. Nomura, K. Goto, K. Sasaki, K. Kawara, Q.T. Thieu, R. Togashi, Y. Kumagai, M. Higashiwaki, A. Kuramata, S. Yamakoshi, B. Monemar, A. Koukitu, Appl. Phys. Express 8, 015503 (2015)

    Article  Google Scholar 

  16. Q.T. Thieu, D. Wakimoto, Y. Koishikawa, K. Sasaki, K. Goto, K. Konishi, H. Murakami, A. Kuramata, Y. Kumagai, S. Yamakoshi, Jpn. J. Appl. Phys. 56, 110310 (2017)

    Article  Google Scholar 

  17. K. Konishi, K. Goto, R. Togashi, H. Murakami, M. Higashiwaki, A. Kuramata, S. Yamakoshi, B. Monemar, Y. Kumagai, J. Cryst. Growth 492, 39 (2018)

    Article  CAS  Google Scholar 

  18. K. Goto, K. Konishi, H. Murakami, Y. Kumagai, B. Monemar, M. Higashiwaki, A. Kuramata, S. Yamakoshi, Thin Solid Films 666, 182 (2018)

    Article  CAS  Google Scholar 

  19. K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, M. Higashiwaki, Appl. Phys. Lett. 110, 103506 (2017)

    Article  Google Scholar 

  20. J. Yang, S. Ahn, F. Ren, S.J. Pearton, S. Jang, J. Kim, A. Kuramata, Appl. Phys. Lett. 110, 192101 (2017)

    Article  Google Scholar 

  21. K. Sasaki, D. Wakimoto, Q.T. Thieu, Y. Koishikawa, A. Kuramata, M. Higashiwaki, S. Yamakoshi, IEEE Electron Device Lett. 38, 783 (2017)

    Article  CAS  Google Scholar 

  22. K. Sasaki, Q.T. Thieu, D. Wakimoto, Y. Koishikawa, A. Kuramata, S. Yamakoshi, Appl. Phys. Express 10, 124201 (2017)

    Article  Google Scholar 

  23. Z. Hu, K. Nomoto, W. Li, N. Tanen, K. Sasaki, A. Kuramata, T. Nakamura, D. Jena, H.G. Xing, IEEE Electron Device Lett. 39, 869 (2018)

    Article  CAS  Google Scholar 

  24. M.H. Wong, K. Goto, H. Murakami, Y. Kumagai, M. Higashiwaki, IEEE Electron Device Lett. 40, 431 (2019)

    Article  CAS  Google Scholar 

  25. M.W. Chase Jr. (ed.), NIST-JANAF Thermochemical Tables (The American Chemical Society and the American Institute of Physics for the National Institute of Standards and Technology, Gaithersburg, 1998)

    Google Scholar 

  26. L.V. Gurvich, I.V. Veyts, C.B. Alcock (eds.), Thermodynamic Properties of Individual Substances (USSR Academy of Sciences, Institute for High Temperatures and State Institute of Applied Chemistry in cooperation with the National Standard Reference Data Service of the U.S.S.R., Moscow, 1994)

    Google Scholar 

  27. M. Tirtowidjojo, R. Pollard, J. Cryst. Growth 77, 200 (1986)

    Article  CAS  Google Scholar 

  28. M. Passlack, N.E.J. Hunt, E.F. Schubert, G.J. Zydzik, M. Hong, J.P. Mannaerts, R.L. Opila, R.J. Fischer, Appl. Phys. Lett. 64, 2715 (1994)

    Article  CAS  Google Scholar 

  29. M. Higashiwaki, K. Konishi, K. Sasaki, K. Goto, K. Nomura, Q.T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, A. Kuramata, S. Yamakoshi, Appl. Phys. Lett. 108, 133503 (2016)

    Article  Google Scholar 

  30. M.H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, M. Higashiwaki, Appl. Phys. Lett. 106, 032105 (2015)

    Article  Google Scholar 

  31. J.B. Varley, J.R. Weber, A. Janotti, C.G. Van de Walle, Appl. Phys. Lett. 97, 142106 (2010)

    Article  Google Scholar 

  32. T. Oishi, Y. Koga, K. Harada, M. Kasu, Appl. Phys. Express 8, 031101 (2015)

    Article  CAS  Google Scholar 

  33. N.T. Son, K. Goto, K. Nomura, Q.T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, A. Kuramata, M. Higashiwaki, A. Koukitu, S. Yamakoshi, B. Monemar, E. Janzén, J. Appl. Phys. 120, 235703 (2016)

    Article  Google Scholar 

  34. N. Ma, N. Tanen, A. Verma, Z. Guo, T. Luo, H. Xing, D. Jena, Appl. Phys. Lett. 109, 212101 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), “Next-generation power electronics” (funding agency: NEDO). The authors would like to express their sincere thanks to Dr. M. Higashiwaki of NICT, Japan, for his help in the electrical measurements and for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinao Kumagai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumagai, Y., Konishi, K., Goto, K., Murakami, H., Monemar, B. (2020). Halide Vapor Phase Epitaxy 1. In: Higashiwaki, M., Fujita, S. (eds) Gallium Oxide. Springer Series in Materials Science, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-030-37153-1_10

Download citation

Publish with us

Policies and ethics