Skip to main content

On the Constructive Truth and Falsity in Peano Arithmetic

  • Conference paper
  • First Online:
Logical Foundations of Computer Science (LFCS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11972))

Included in the following conference series:

  • 585 Accesses

Abstract

Recently, Artemov [4] offered the notion of constructive truth and falsity in the spirit of Brouwer-Heyting-Kolmogorov semantics and its formalization, the Logic of Proofs. In this paper, we provide a complete description of constructive truth and falsity for Friedman’s constant fragment of Peano Arithmetic. For this purpose, we generalize the constructive falsity to n-constructive falsity where n is any positive natural number. We also establish similar classification results for constructive truth and n-constructive falsity of Friedman’s formulas. Then, we discuss ‘extremely’ independent sentences in the sense that they are classically true but neither constructively true nor n-constructive false for any n.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A detailed proof of the provable \(\varSigma _1\)-completeness is found on pp. 46–49 of [11].

  2. 2.

    As usual, PA\(^n\) is defined: PA\(^1\)= PA; PA\(^{n+1}= \) PA\(^n + Con(\textsf {PA}^n)\).

References

  1. Artemov, S.: Extensions of arithmetic and modal logics (in Russian). Ph.D. Thesis, Moscow State University, Steklov Mathematical Institute (1979)

    Google Scholar 

  2. Artemov, S.: Operational modal logic. Technical report MSI 95–29, Cornell University (1995)

    Google Scholar 

  3. Artemov, S.: Explicit provability and constructive semantics. Bull. Symb. Log. 7(1), 1–36 (2001)

    Article  MathSciNet  Google Scholar 

  4. Artemov, S.: The Provability of Consistency. arXiv preprint arXiv:1902.07404 (2019)

  5. Artemov, S., Beklemishev, L.: Provability logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic. Handbook of Philosophical Logic, vol. 13, 2nd edn, pp. 189–360. Springer, Dordrecht (2005). https://doi.org/10.1007/1-4020-3521-7_3

    Chapter  Google Scholar 

  6. Artemov, S., Fitting, M.: Justification Logic. The Stanford Encyclopedia of Philosophy (2012)

    Google Scholar 

  7. Artemov, S., Fitting, M.: Justification Logic: Reasoning with Reasons. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  8. Avron, A.: On modal systems having arithmetical interpretations. J. Symb. Log. 49, 935–942 (1984)

    Article  MathSciNet  Google Scholar 

  9. Boolos, G.: On deciding the truth of certain statements involving the notion of consistency. J. Symb. Log. 41, 779–781 (1976)

    Article  MathSciNet  Google Scholar 

  10. Boolos, G.: Extremely undecidable sentences. J. Symb. Log. 47(1), 191–196 (1982)

    Article  MathSciNet  Google Scholar 

  11. Boolos, G.: The Logic of Provability. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  12. Feferman, S.: Arithmetization of metamathematics in a general setting. Fundamenta mathematicae 49(1), 35–92 (1960)

    Article  MathSciNet  Google Scholar 

  13. Friedman, H.: One hundred and two problems in mathematical logic. J. Symb. Log. 40, 113–129 (1975)

    Article  MathSciNet  Google Scholar 

  14. Kuznets, R., Studer, T.: Weak arithmetical interpretations for the logic of proofs. Log. J. IGPL 24(3), 424–440 (2016)

    Article  MathSciNet  Google Scholar 

  15. Kuznets, R., Studer, T.: Logics of Proofs and Justifications. College Publications (2019)

    Google Scholar 

  16. Montagna, F.: On the diagonalizable algebra of Peano arithmetic. Bollettino della Unione Math. Italiana 16(5), 795–812 (1979)

    MathSciNet  MATH  Google Scholar 

  17. Smorýnski, C.: Self-Reference and Modal Logic. Springer, Heidelberg (1985). https://doi.org/10.1007/978-1-4613-8601-8

    Book  MATH  Google Scholar 

  18. Turing, A.M.: Systems of logic based on ordinals. Proc. London Math. Soc. 2(1), 161–228 (1939)

    Article  MathSciNet  Google Scholar 

  19. Visser, A.: Aspects of diagonalization and provability. Ph.D. dissertation, Drukkerij Elinkwijk (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirohiko Kushida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kushida, H. (2020). On the Constructive Truth and Falsity in Peano Arithmetic. In: Artemov, S., Nerode, A. (eds) Logical Foundations of Computer Science. LFCS 2020. Lecture Notes in Computer Science(), vol 11972. Springer, Cham. https://doi.org/10.1007/978-3-030-36755-8_5

Download citation

Publish with us

Policies and ethics