Skip to main content

Parameterised Complexity of Abduction in Schaefer’s Framework

  • Conference paper
  • First Online:
Logical Foundations of Computer Science (LFCS 2020)

Abstract

Abductive reasoning is a non-monotonic formalism stemming from the work of Peirce. It describes the process of deriving the most plausible explanations of known facts. Considering the positive version asking for sets of variables as explanations, we study, besides asking for existence of the set of explanations, two explanation size limited variants of this reasoning problem (less than or equal to, and equal to). In this paper, we present a thorough two-dimensional classification of these problems. The first dimension is regarding the parameterised complexity under a wealth of different parameterisations. The second dimension spans through all possible Boolean fragments of these problems in Schaefer’s constraint satisfaction framework with co-clones (STOC 1978). Thereby, we almost complete the parameterised picture started by Fellows et al. (AAAI 2012), partially building on results of Nordh and Zanuttini (Artif. Intell. 2008). In this process, we outline a fine-grained analysis of the inherent parameterised intractability of these problems and pinpoint their FPT parts. As the standard algebraic approach is not applicable to our problems, we develop an alternative method that makes the algebraic tools partially available again.

Funded by German Research Foundation (DFG), project ME 4279/1-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bauland, M., Mundhenk, M., Schneider, T., Schnoor, H., Schnoor, I., Vollmer, H.: The tractability of model checking for LTL: the good, the bad, and the ugly fragments. ACM Trans. Comput. Logic (TOCL) 12(2), 13:1–13:28 (2011)

    Article  MathSciNet  Google Scholar 

  2. Bauland, M., Schneider, T., Schnoor, H., Schnoor, I., Vollmer, H.: The complexity of generalized satisfiability for linear temporal logic. Log. Methods Comput. Sci. 5(1) (2009). http://arxiv.org/abs/0812.4848

  3. Beyersdorff, O., Meier, A., Thomas, M., Vollmer, H.: The complexity of reasoning for fragments of default logic. J. Log. Comput. 22(3), 587–604 (2012). https://doi.org/10.1093/logcom/exq061

    Article  MathSciNet  MATH  Google Scholar 

  4. Böhler, E., Reith, S., Schnoor, H., Vollmer, H.: Bases for Boolean co-clones. Inf. Process. Lett. 96(2), 59–66 (2005). https://doi.org/10.1016/j.ipl.2005.06.003

    Article  MathSciNet  MATH  Google Scholar 

  5. Creignou, N., Ktari, R., Müller, J.S., Olive, F., Vollmer, H.: Parameterised enumeration for modification problems. Algorithms 12(9) (2019). https://doi.org/10.3390/a12090189

    Article  MathSciNet  Google Scholar 

  6. Creignou, N., Meier, A., Müller, J.S., Schmidt, J., Vollmer, H.: Paradigms for parameterized enumeration. Theory Comput. Syst. 60(4), 737–758 (2017). https://doi.org/10.1007/s00224-016-9702-4

    Article  MathSciNet  MATH  Google Scholar 

  7. Creignou, N., Meier, A., Thomas, M., Vollmer, H.: The complexity of reasoning for fragments of autoepistemic logic. ACM Trans. Comput. Logic 13(2), 17:1–17:22 (2012). https://doi.org/10.1145/2159531.2159539

    Article  MathSciNet  MATH  Google Scholar 

  8. Creignou, N., Olive, F., Schmidt, J.: Enumerating all solutions of a Boolean CSP by non-decreasing weight. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 120–133. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21581-0_11

    Chapter  MATH  Google Scholar 

  9. Creignou, N., Schmidt, J., Thomas, M.: Complexity of propositional abduction for restricted sets of Boolean functions. In: Lin, F., Sattler, U., Truszczynski, M. (eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the Twelfth International Conference, KR 2010, Toronto, Ontario, Canada, 9–13 May 2010. AAAI Press (2010). http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1201

  10. Creignou, N., Schmidt, J., Thomas, M.: Complexity classifications for propositional abduction in post’s framework. J. Log. Comput. 22(5), 1145–1170 (2012). https://doi.org/10.1093/logcom/exr012

    Article  MathSciNet  MATH  Google Scholar 

  11. Creignou, N., Schmidt, J., Thomas, M., Woltran, S.: Sets of Boolean connectives that make argumentation easier. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS (LNAI), vol. 6341, pp. 117–129. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15675-5_12

    Chapter  Google Scholar 

  12. Creignou, N., Schmidt, J., Thomas, M., Woltran, S.: Complexity of logic-based argumentation in post’s framework. Argum. Comput. 2(2–3), 107–129 (2011). https://doi.org/10.1080/19462166.2011.629736

    Article  Google Scholar 

  13. Creignou, N., Zanuttini, B.: A complete classification of the complexity of propositional abduction. SIAM J. Comput. 36(1), 207–229 (2006). https://doi.org/10.1137/S0097539704446311

    Article  MathSciNet  MATH  Google Scholar 

  14. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, Heidelberg (1999). https://doi.org/10.1007/978-1-4612-0515-9

    Book  Google Scholar 

  15. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, Heidelberg (1999). https://doi.org/10.1007/978-1-4471-5559-1

    Book  Google Scholar 

  16. Durand, A., Hermann, M.: The inference problem for propositional circumscription of afine formulas Is coNP-complete. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 451–462. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3_40

    Chapter  Google Scholar 

  17. Eiter, T., Gottlob, G.: The complexity of logic-based abduction. J. ACM 42(1), 3–42 (1995). https://doi.org/10.1145/200836.200838

    Article  MathSciNet  MATH  Google Scholar 

  18. Fellows, M.R., Pfandler, A., Rosamond, F.A., Rümmele, S.: The parameterized complexity of abduction. In: Hoffmann, J., Selman, B. (eds.), Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, 2 July 2012, Toronto, Ontario, Canada. AAAI Press (2012). http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5048

  19. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-29953-X

    Book  Google Scholar 

  20. Hemaspaandra, E., Schnoor, H., Schnoor, I.: Generalized modal satisfiability. CoRR, abs/0804.2729:1–32 (2008). http://arxiv.org/abs/0804.2729

  21. Josephson, J.R., Chandrasekaran, B., Smith, J.W., Tanner, M.C.: A mechanism for forming composite explanatory hypotheses. IEEE Trans. Syst. Man Cybern. 17(3), 445–454 (1987). https://doi.org/10.1109/TSMC.1987.4309060

    Article  Google Scholar 

  22. Lewis, H.R.: Satisfiability problems for propositional calculi. Math. Sys. Theory 13, 45–53 (1979)

    Article  MathSciNet  Google Scholar 

  23. Mahmood, Y., Meier, A., Schmidt, J.: Parameterised complexity for abduction. CoRR, abs/1906.00703 (2019)

    Google Scholar 

  24. Meier, A., Mundhenk, M., Schneider, T., Thomas, M., Weber, V., Weiss, F.: The complexity of satisfiability for fragments of hybrid logic—Part I. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 587–599. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03816-7_50

    Chapter  MATH  Google Scholar 

  25. Meier, A., Schneider, T.: Generalized satisfiability for the description logic ALC. Theor. Comput. Sci. 505, 55–73 (2013). https://doi.org/10.1016/j.tcs.2013.02.009

    Article  MathSciNet  MATH  Google Scholar 

  26. Meier, A., Thomas, M., Vollmer, H., Mundhenk, M.: The complexity of satisfiability for fragments of CTL and ctl*. Int. J. Found. Comput. Sci. 20(5), 901–918 (2009). https://doi.org/10.1142/S0129054109006954

    Article  MathSciNet  MATH  Google Scholar 

  27. Morgan, C.G.: Hypothesis generation by machine. Artif. Intell. 2(2), 179–187 (1971). https://doi.org/10.1016/0004-3702(71)90009-9

    Article  MathSciNet  MATH  Google Scholar 

  28. Nordh, G., Zanuttini, B.: What makes propositional abduction tractable. Artif. Intell. 172(10), 1245–1284 (2008). https://doi.org/10.1016/j.artint.2008.02.001

    Article  MathSciNet  MATH  Google Scholar 

  29. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, Cambridge (2014). http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions

    Book  Google Scholar 

  30. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1994)

    MATH  Google Scholar 

  31. Peirce, C.S.: Collected Papers of Charles Sanders Peirce. Oxford University Press, London (1958)

    MATH  Google Scholar 

  32. Peng, Y., Reggia, J.A.: Abductive Inference Models for Diagnostic Problem-Solving. Artificial Intelligence. Springer. New York (1990). https://doi.org/10.1007/978-1-4419-8682-5

    Book  Google Scholar 

  33. Poole, D.: Normality and faults in logic-based diagnosis. In: Sridharan, N.S. (ed.), Proceedings of the 11th International Joint Conference on Artificial Intelligence. Detroit, MI, USA, August 1989, pp. 1304–1310. Morgan Kaufmann (1989). http://ijcai.org/Proceedings/89-2/Papers/073.pdf

  34. Post, E.L.: The two-valued iterative systems of mathematical logic. Ann. Math. Stud. 5, 1–122 (1941)

    MathSciNet  Google Scholar 

  35. Reith, S.: Generalized satisfiability problems. Ph.D. thesis, Julius Maximilians University Würzburg, Germany (2001). http://opus.bibliothek.uni-wuerzburg.de/opus/volltexte/2002/7/index.html

  36. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986). https://doi.org/10.1016/0196-6774(86)90023-4

    Article  MathSciNet  MATH  Google Scholar 

  37. Schaefer, T.J.: The complexity of satisfiability problems. In: Lipton, R.J., Burkhard, W.A., Savitch, W.J., Friedman, E.P., Aho, A.V. (eds.), Proceedings of the 10th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, 1–3 May 1978, pp. 216–226. ACM (1978). https://doi.org/10.1145/800133.804350

  38. Schnoor, H., Schnoor, I.: Partial polymorphisms and constraint satisfaction problems. In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds.) Complexity of Constraints. LNCS, vol. 5250, pp. 229–254. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92800-3_9

    Chapter  MATH  Google Scholar 

  39. Selman, B., Levesque, H.J.: Abductive and default reasoning: a computational core. In: Shrobe, H.E., Dietterich, T.G., Swartout, W.R. (eds.), Proceedings of the 8th National Conference on Artificial Intelligence, Boston, Massachusetts, USA, 29 July–3 August 1990, vol. 2, pp. 343–348. AAAI Press/The MIT Press (1990). http://www.aaai.org/Library/AAAI/1990/aaai90-053.php

  40. Thomas, M.: The complexity of circumscriptive inference in post’s lattice. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS (LNAI), vol. 5753, pp. 290–302. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04238-6_25

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir Mahmood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahmood, Y., Meier, A., Schmidt, J. (2020). Parameterised Complexity of Abduction in Schaefer’s Framework. In: Artemov, S., Nerode, A. (eds) Logical Foundations of Computer Science. LFCS 2020. Lecture Notes in Computer Science(), vol 11972. Springer, Cham. https://doi.org/10.1007/978-3-030-36755-8_13

Download citation

Publish with us

Policies and ethics