Skip to main content

Syntactic Cut-Elimination for Intuitionistic Fuzzy Logic via Linear Nested Sequents

  • Conference paper
  • First Online:
Logical Foundations of Computer Science (LFCS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11972))

Included in the following conference series:

  • 609 Accesses

Abstract

This paper employs the linear nested sequent framework to design a new cut-free calculus (\(\mathsf {LNIF}\)) for intuitionistic fuzzy logic—the first-order Gödel logic characterized by linear relational frames with constant domains. Linear nested sequents—which are nested sequents restricted to linear structures—prove to be a well-suited proof-theoretic formalism for intuitionistic fuzzy logic. We show that the calculus \(\mathsf {LNIF}\) possesses highly desirable proof-theoretic properties such as invertibility of all rules, admissibility of structural rules, and syntactic cut-elimination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We refer to [28] for a detailed discussion of fundamental proof-theoretic properties.

References

  1. Avron, A.: Hypersequents, logical consequence and intermediate logics for concurrency. Ann. Math. Artif. Intell. 4(3), 225–248 (1991). https://doi.org/10.1007/BF01531058

    Article  MathSciNet  MATH  Google Scholar 

  2. Baaz, M., Ciabattoni, A., Preining, N.: SAT in monadic gödel logics: a borderline between decidability and undecidability. In: Ono, H., Kanazawa, M., de Queiroz, R. (eds.) WoLLIC 2009. LNCS (LNAI), vol. 5514, pp. 113–123. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02261-6_10

    Chapter  MATH  Google Scholar 

  3. Baaz, M., Preining, N., Zach, R.: First-order gödel logics. Ann. Pure Appl. Logic 147(1), 23–47 (2007). https://doi.org/10.1016/j.apal.2007.03.001. URL http://www.sciencedirect.com/science/article/pii/S016800720700019X

    Article  MathSciNet  Google Scholar 

  4. Baaz, M., Zach, R.: Hypersequents and the proof theory of intuitionistic fuzzy logic. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 187–201. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44622-2_12

    Chapter  MATH  Google Scholar 

  5. Belnap Jr., N.D.: Display logic. J. Philos. Log. 11(4), 375–417 (1982)

    Article  MathSciNet  Google Scholar 

  6. Borgwardt, S., Distel, F., Peñaloza, R.: Decidable Gödel description logics without the finitely-valued model property. In: Baral, C., De Giacomo, G., Eiter, T. (eds.) Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR 2014), pp. 228–237. AAAI Press (2014)

    Google Scholar 

  7. Dummett, M.: A propositional calculus with denumerable matrix. J. Symb. Log. 24(2), 97–106 (1959). http://www.jstor.org/stable/2964753

    Article  MathSciNet  Google Scholar 

  8. Fitting, M.: Nested sequents for intuitionistic logics. Notre Dame J. Form. Log. 55(1), 41–61 (2014). https://doi.org/10.1215/00294527-2377869

    Article  MathSciNet  MATH  Google Scholar 

  9. Gabbay, D., Shehtman, V., Skvortsov, D.: Quantification in Non-classical Logics. Studies in Logic and Foundations of Mathematics. Elsevier, Amsterdam (2009)

    MATH  Google Scholar 

  10. Gentzen, G.: Untersuchungen uber das logische schliessen. Math. Z. 39(3), 405–431 (1935)

    Article  MathSciNet  Google Scholar 

  11. Gödel, K.: Zum intuitionistischen aussagenkalkül. Anzeiger der Akademie der Wissenschaften in Wien 69, 65–66 (1932)

    MATH  Google Scholar 

  12. Goré, R., Postniece, L., Tiu, A.: Cut-elimination and proof-search for bi-intuitionistic logic using nested sequents. In: Areces, C., Goldblatt, R. (eds.) Advances in Modal Logic 7, Papers from the Seventh Conference on “Advances in Modal Logic,” held in Nancy, France, 9–12 September 2008, pp. 43–66. College Publications (2008). http://www.aiml.net/volumes/volume7/Gore-Postniece-Tiu.pdf

  13. Hajek, P.: The Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

    Book  Google Scholar 

  14. Horn, A.: Logic with truth values in a linearly ordered heyting algebra. J. Symb. Log. 34(3), 395–408 (1969). http://www.jstor.org/stable/2270905

    Article  MathSciNet  Google Scholar 

  15. Lellmann, B.: Linear nested sequents, 2-sequents and hypersequents. In: De Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 135–150. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24312-2_10

    Chapter  MATH  Google Scholar 

  16. Lellmann, B.: LNSprover: modular theorem proving with linear nested sequents (2016). https://www.logic.at/staff/lellmann/lnsprover/

  17. Lellmann, B., Kuznets, R.: Interpolation for intermediate logics via hyper- and linear nested sequents. In: Advances in Modal Logic, vol. 12, pp. 473–492 (2018)

    Google Scholar 

  18. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans. Comput. Log. 2(4), 526–541 (2001). https://doi.org/10.1145/383779.383783

    Article  MathSciNet  MATH  Google Scholar 

  19. Lyon, T.: Syntactic cut-elimination for intuitionistic fuzzy logic via linear nested sequents (2019). https://arxiv.org/abs/1910.06657

  20. Lyon, T., van Berkel, K.: Automating agential reasoning: proof-calculi and syntactic decidability for STIT logics. In: Baldoni, M., Dastani, M., Liao, B., Sakurai, Y., Zalila Wenkstern, R. (eds.) PRIMA 2019. LNCS (LNAI), vol. 11873, pp. 202–218. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33792-6_13

    Chapter  Google Scholar 

  21. Lyon, T., Tiu, A., Góre, R., Clouston, R.: Syntactic interpolation for tense logics and bi-intuitionistic logic via nested sequents. In: Fernández, M., Muscholl, A. (eds.) 28th EACSL Annual Conference on Computer Science Logic (CSL 2020). Leibniz International Proceedings in Informatics (LIPIcs), vol. 152. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2020, forthcoming)

    Google Scholar 

  22. Masini, A.: 2-sequent calculus: a proof theory of modalities. Ann. Pure Appl. Log. 58(3), 229–246 (1992). https://doi.org/10.1016/0168-0072(92)90029-Y. http://www.sciencedirect.com/science/article/pii/016800729290029Y

    Article  MathSciNet  MATH  Google Scholar 

  23. Masini, A.: 2-sequent calculus: intuitionism and natural deduction. J. Log. Comput. 3(5), 533–562 (1993). https://doi.org/10.1093/logcom/3.5.533

    Article  MathSciNet  MATH  Google Scholar 

  24. Poggiolesi, F.: A cut-free simple sequent calculus for modal logic S5. Rev. Symb. Log. 1(1), 3–15 (2008). https://doi.org/10.1017/S1755020308080040

    Article  MathSciNet  MATH  Google Scholar 

  25. Takeuti, G., Titani, S.: Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. J. Symb. Log. 49(3), 851–866 (1984). https://doi.org/10.2307/2274139

    Article  MathSciNet  MATH  Google Scholar 

  26. Viganò, L.: Labelled Non-classical Logics. Kluwer Academic Publishers, Dordrecht (2000). With a foreword by Dov M. Gabbay

    Book  Google Scholar 

  27. Visser, A.: On the completenes principle: a study of provability in heyting’s arithmetic and extensions. Ann. Math. Log. 22(3), 263–295 (1982). https://doi.org/10.1016/0003-4843(82)90024-9. http://www.sciencedirect.com/science/article/pii/0003484382900249

    Article  MATH  Google Scholar 

  28. Wansing, H.: Sequent calculi for normal modal propositional logics. J. Log. Comput. 4(2), 125–142 (1994). https://doi.org/10.1093/logcom/4.2.125

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank his supervisor A. Ciabattoni for her continued support, B. Lellmann for his thought-provoking discussions on linear nested sequents, and K. van Berkel for his helpful comments. Work funded by FWF projects I2982, Y544-N2, and W1255-N23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Lyon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lyon, T. (2020). Syntactic Cut-Elimination for Intuitionistic Fuzzy Logic via Linear Nested Sequents. In: Artemov, S., Nerode, A. (eds) Logical Foundations of Computer Science. LFCS 2020. Lecture Notes in Computer Science(), vol 11972. Springer, Cham. https://doi.org/10.1007/978-3-030-36755-8_11

Download citation

Publish with us

Policies and ethics