Skip to main content

Improved Brain Tumor Segmentation in MRI Images Based on Thermal Analysis Model Using U-Net and GPUs

  • Conference paper
  • First Online:
Advanced Intelligent Systems for Sustainable Development (AI2SD’2019) (AI2SD 2019)

Abstract

This paper presents a new approach to improve brain tumor segmentation in Magnetic Resonance Imaging (MRI) using brain temperature distribution and U-Net convolutional neural network. As we presented in our recent works, brain tumors generate more heat than healthy tissues and based on tumor temperature profile we can determine tumor borders and reinforce segmentation in conventional MRI sequences such as T1-weighted, T1-weighed contrast-enhanced, T2-weighted, and Flair images. In the present work, U-Net architecture was used for brain tumor segmentation from thermal images. The results were compared to segmentation with U-Net in Flair images. Pennes bioheat transfer equation discretized with Finite Difference Method (FDM), was used to calculate the temperature distribution of the brain with tumors, 2% of additional Gaussian noise was added to the calculated temperature and transformed to grayscale thermal images. Then, U-Net was used for brain tumor segmentation from thermal images. We have generated 276 images to train the U-Net model, and 25 images were used to test the model. The dataset is containing thermal and the corresponding Flair images with the ground truth of tumors of the same patient at the same level. The training computation time of U-Net in 276 thermal images was about 15 h using NVIDIA GTX 1060 GPU with 6 GB memory. The obtained segmentation from thermal images was compared to segmentation of tumors from Flair images using U-Net in 10 images. An average of 0.33% of tumors was detected only in thermal images, and an average of 2.05% of healthy tissues was detected only in thermal images. The obtained results demonstrate the importance of thermal information of brain tumors to improve segmentation in MRI towards an effective diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bousselham, A., Bouattane, O., Youssfi, M., Raihani, A.: Toward an efficient brain tumor extraction using level set method and pennes bioheat equation. In: 4th IEEE International Colloquium on Information Science and Technology (CiSt), Tangier, Morocco, pp. 762–767 (2016). https://doi.org/10.1109/cist.2016.7804989

  2. Bousselham, A., Bouattane, O., Youssfi, M., Raihani, A.: An efficient level set speed function based on temperature changes for brain tumor segmentation. In: Khoukhi, F., Bahaj, M., Ezziyyani, M. (eds.) AIT2S 2018. LNNS, vol. 66, pp. 121–129. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11914-0_13

    Chapter  Google Scholar 

  3. Bousselham, A., Bouattane, O., Youssfi, M., Raihani, A.: Towards reinforced brain tumor segmentation on MRI images based on temperature changes on pathologic area. Int. J. Biomed. Imaging, Article ID 1758948 (2019). https://doi.org/10.1155/2019/1758948

    Article  Google Scholar 

  4. Pennes, H.H.: Analysis on tissue arterial blood temperature in the resting human forearm. Appl. Physiol. 1(2), 93–122 (1948). https://doi.org/10.1152/jappl.1948.1.2.93

    Article  Google Scholar 

  5. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Google Scholar 

  6. Kumar, S., Negi, A., Singh, J.N.: Semantic segmentation using deep learning for brain tumor MRI via fully convolution neural networks. In: Satapathy, S., Joshi, A. (eds.) Information and Communication Technology for Intelligent Systems, SIST, vol. 106, pp. 11–19. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1742-2_2

    Google Scholar 

  7. Kermi, A., Mahmoudi, I., Khadir, M.T.: Deep convolutional neural networks using U-Net for automatic brain tumor segmentation in multimodal MRI volumes. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018, LNCS, vol. 11384, pp. 37–48. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_4

    Chapter  Google Scholar 

  8. Smistad, E., Falch, T.L., Bozorgi, M., Elster, A.C., Lindseth, F.: Medical image segmentation on gpus - a comprehensive review. Med. Image Anal. 20(1), 1–18 (2015). https://doi.org/10.1016/j.media.2014.10.012

    Article  Google Scholar 

  9. Kalaiselvi, T., Sriramakrishnan, P., Somasundaram, K.: Survey of using GPU CUDA programming model in medical image analysis. Inf. Med. Unlocked 9, 133–144 (2017). https://doi.org/10.1016/j.imu.2017.08.001

    Article  Google Scholar 

  10. Wissler, E.H.: Pennes’ 1948 paper revisited. J. Appl. Physiol. 85(1), 35–41 (1998). https://doi.org/10.1152/jappl.1998.85.1.35

    Article  Google Scholar 

  11. Marcinkiewicz, M., Nalepa, J., Lorenzo, P.R., Dudzik, W., Mrukwa, G.: Segmenting brain tumors from MRI using cascaded multi-modal U-Nets. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) Brainlesion 2018, LNCS, vol. 11384, pp. 13–24. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_2

    Chapter  Google Scholar 

  12. Luna, M., Park, S.H.: 3D patchwise U-Net with transition layers for MR brain segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) Brainlesion 2018, LNCS, vol. 11383, pp. 394–403, Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_40

    Chapter  Google Scholar 

  13. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017). https://doi.org/10.1109/TPAMI.2016.2572683

    Article  Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv Prepr. arXiv1412.6980 (2014)

    Google Scholar 

  15. DL4J. https://deeplearning4j.org/

  16. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  17. Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., Büchler, P.: The virtual skeleton database: an open access repository for biomedical research and collaboration. J. Med. Internet Res. 15(11), e245 (2013). https://doi.org/10.2196/jmir.2930

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelmajid Bousselham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bousselham, A., Bouattane, O., Youssfi, M., Raihani, A. (2020). Improved Brain Tumor Segmentation in MRI Images Based on Thermal Analysis Model Using U-Net and GPUs. In: Ezziyyani, M. (eds) Advanced Intelligent Systems for Sustainable Development (AI2SD’2019). AI2SD 2019. Advances in Intelligent Systems and Computing, vol 1106. Springer, Cham. https://doi.org/10.1007/978-3-030-36677-3_10

Download citation

Publish with us

Policies and ethics