Skip to main content

Measuring and Analyzing the Burst Ratio in IP Traffic

  • Conference paper
  • First Online:
Broadband Communications, Networks, and Systems (Broadnets 2019)

Abstract

The burst ratio is a parameter of the packet loss process, characterizing the tendency of losses to group together, in long series. Such series of losses are especially unwelcome in multimedia transmissions, which constitute a large fraction of contemporary traffic. In this paper, we first present and discuss results of measurements of the burst ratio in IP traffic, at a bottleneck link of our university campus. The measurements were conducted in various network conditions, i.e. various loads, ports/applications used and packet size distributions. Secondly, we present theoretical values of the burst ratio, computed using a queueing model, and compare them with the values obtained in the measurements.

This work was conducted within project 2017/25/B/ST6/00110, founded by National Science Centre, Poland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mongay Batalla, J., et al.: Adaptive video streaming: rate and buffer on the track of minimum re-buffering. IEEE J. Sel. Areas Commun. 34(8), 2154–2167 (2016)

    Article  Google Scholar 

  2. McGowan, J.W.: Burst ratio: a measure of bursty loss on packet-based networks, 16 2005. US Patent (2005)

    Google Scholar 

  3. ITU-T Recommendation G.113: Transmission impairments due to speech processing. Technical report (2007)

    Google Scholar 

  4. Samociuk, D., Chydzinski, A., Barczyk, M.: Experimental measurements of the packet burst ratio parameter. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2018. CCIS, vol. 928, pp. 455–466. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99987-6_35

    Chapter  Google Scholar 

  5. Sanneck H.A., Carle, G.: Framework model for packet loss metrics based on loss runlengths. In: Proceedings of Multimedia Computing and Networking, pp. 1–11 (2000)

    Google Scholar 

  6. Jiang, W., Schulzrinne, H.: Modeling of packet loss and delay and their effect on real-time multimedia service quality. In: Proceedings of NOSSDAV, pp. 1–10 (2000)

    Google Scholar 

  7. Veeraraghavan, M., Cocker, N., Moors, T.: Support of voice services in IEEE 802.11 wireless LANs. In: Proceedings of IEEE INFOCOM, vol. 1, pp. 488–497 (2001)

    Google Scholar 

  8. Hasslinger, G., Hohlfeld, O.: The Gilbert-Elliott model for packet loss in real time services on the Internet. In: Proceedings of Measuring, Modelling and Evaluation of Computer and Communication Systems Conference, pp. 1–15 (2008)

    Google Scholar 

  9. Clark, A.: Modeling the effects of burst packet loss and recency on subjective voice quality. In: Proceedings of Internet Telephony Workshop, pp. 123–127 (2001)

    Google Scholar 

  10. Rachwalski, J., Papir, Z.: Burst ratio in concatenated Markov-based channels. J. Telecommun. Inf. Technol. 1, 3–9 (2014)

    Google Scholar 

  11. Rachwalski, J., Papir, Z.: Analysis of burst ratio in concatenated channels. J. Telecommun. Inf. Technol. 4, 65–73 (2015)

    Google Scholar 

  12. Chydzinski, A., Samociuk, D.: Burst ratio in a single-server queue. Telecommun. Syst. 70, 263–276 (2019)

    Article  Google Scholar 

  13. Chydzinski, A., Samociuk, D., Adamczyk, B.: Burst ratio in the finite-buffer queue with batch Poisson arrivals. Appl. Math. Comput. 330, 225–238 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Samociuk, D., Chydzinski, A.: On the impact of the dropping function on the packet queueing performance. In: Proceedings of International Convention on Information and Communication Technology, Electronics and Microelectronics, pp. 473–478 (2018)

    Google Scholar 

  15. Smolka, B., et al.: New filtering technique for the impulsive noise reduction in color images. Math. Probl. Eng. 2004(1), 79–91 (2004)

    Article  Google Scholar 

  16. Benko, P., Veres, A.: A passive method for estimating end-to-end TCP packet loss. In: Proceedings of IEEE GLOBECOM 2002, pp. 2609–2613 (2002)

    Google Scholar 

  17. Bolot, J.: End-to-end packet delay and loss behavior in the Internet. In: Proceedings of ACM SIGCOMM 1993, pp. 289–298 (1993)

    Article  Google Scholar 

  18. Coates, M., Nowak, R.: Network loss inference using unicast end-to-end measurement. In: Proceedings of ITC Conference on IP Traffic, Measurement and Modeling, pp. 282–289 (2000)

    Google Scholar 

  19. Duffield, N., Presti, F.L., Paxson, V., Towsley, D.: Inferring link loss using striped unicast probes. In: Proceedings of IEEE INFOCOM 2001, pp. 915–923 (2001)

    Google Scholar 

  20. Sommers, J., Barford, P., Duffield, N., Ron, A.: Improving accuracy in end-to-end packet loss measurement. ACM SIGCOMM Comput. Commun. Rev. 35(4), 157–168 (2005)

    Article  Google Scholar 

  21. Takagi, H.: Queueing Analysis - Finite Systems. North-Holland, Amsterdam (1993)

    Google Scholar 

  22. Chydzinski, A., Wojcicki, R., Hryn, G.: On the number of losses in an MMPP queue. In: Koucheryavy, Y., Harju, J., Sayenko, A. (eds.) NEW2AN 2007. LNCS, vol. 4712, pp. 38–48. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74833-5_4

    Chapter  Google Scholar 

  23. Chydzinski, A., Mrozowski, P.: Queues with dropping functions and general arrival processes. PLoS One 11(3), e0150702 (2016)

    Article  Google Scholar 

  24. Yu, X., Modestino, J.W., Tian, X.: The accuracy of Gilbert models in predicting packet-loss statistics for a single-multiplexer network model. In: Proceedings of IEEE INFOCOM 2005, pp. 2602–2612 (2005)

    Google Scholar 

  25. Cidon, I., Khamisy, A., Sidi, M.: Analysis of packet loss processes in high-speed networks. IEEE Trans. Inf. Theory 39(1), 98–108 (1993)

    Article  Google Scholar 

  26. Bratiychuk, M., Chydzinski, A.: On the loss process in a batch arrival queue. Appl. Math. Model. 33(9), 3565–3577 (2009)

    Article  MathSciNet  Google Scholar 

  27. DPDK-Dump application for capturing traffic using DPDK. https://github.com/marty90/DPDK-Dump

  28. TCPmkpub. http://www.icir.org/enterprise-tracing/tcpmkpub.html

  29. TCPdpriv. http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html

  30. Jinliang, F., Jun, X., Mostafa, H.A.: Prefix-preserving IP address anonymization. Comput. Netw. 46(2), 253–272 (2004)

    Article  Google Scholar 

  31. Jinliang, F., Jun, X., Mostafa, H.A.: On the design and performance of prefix-preserving IP traffic trace anonymization. In: Proceedings of ACM SIGCOMM Internet Measurement Workshop, San Francisco (2001)

    Google Scholar 

  32. Jinliang, F., Jun, X., Mostafa, H.A.: Prefix-preserving IP address anonymization: measurement-based security evaluation and a new cryptography-based scheme. In: Proceedings of IEEE International Conference on Network Protocols, Paris (2002)

    Google Scholar 

  33. Chydzinski, A.: Duration of the buffer overflow period in a batch arrival queue. Perform. Eval. 63(4–5), 493–508 (2006)

    Article  Google Scholar 

  34. Fischer, W., Meier-Hellstern, K.: The Markov-modulated Poisson process (MMPP) cookbook. Perform. Eval. 18(2), 149–171 (1992)

    Article  MathSciNet  Google Scholar 

  35. Lucantoni, D.M.: New results on the single server queue with a batch Markovian arrival process. Commun. Stat. Stoch. Models 7(1), 1–46 (1991)

    Article  MathSciNet  Google Scholar 

  36. Chydzinski, A.: Queue size in a BMAP queue with finite buffer. In: Koucheryavy, Y., Harju, J., Iversen, V.B. (eds.) NEW2AN 2006. LNCS, vol. 4003, pp. 200–210. Springer, Heidelberg (2006). https://doi.org/10.1007/11759355_20

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Chydzinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Samociuk, D., Barczyk, M., Chydzinski, A. (2019). Measuring and Analyzing the Burst Ratio in IP Traffic. In: Li, Q., Song, S., Li, R., Xu, Y., Xi, W., Gao, H. (eds) Broadband Communications, Networks, and Systems. Broadnets 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 303. Springer, Cham. https://doi.org/10.1007/978-3-030-36442-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36442-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36441-0

  • Online ISBN: 978-3-030-36442-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics