Skip to main content

Dynamic IFFSM Modeling Using IFHMM-Based Bayesian Non-parametric Learning for Energy Disaggregation in Smart Solar Home System

  • Conference paper
  • First Online:
Broadband Communications, Networks, and Systems (Broadnets 2019)

Abstract

Recently, the analysis and recognition of each appliance’s energy consumption are fundamental in smart homes and smart buildings systems. Our paper presents a novel Non-Intrusive Load Monitoring (NILM) recognition method based on Bayesian Non-Parametric (BNP) learning approach to solve the problem of energy disaggregation for smart Solar Home System (SHS). Several researches assumed that there is prior information about the household appliances in order to restrict those that do not hold the maximum expectation for inference. Therefore, to deal with the unknown number of electrical appliances in a SHS, we have adapted a dynamic Infinite Factorial Hidden Markov Model (IFHMM) -based Infinite Factorial Finite State Machine (IFFSM) to our NILM times-series modeling as an unsupervised BNP learning method. Our suggested method can grip with few or nappropriate learning data as well as to standardize electrical appliance modeling. Our proposed method outperforms FHMM-based FSM modeling results illustrated in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aboulian, A., Donnal, J.S., Leeb, S.B.: Autonomous calibration of non-contact power monitors. IEEE Sens. J. 18(13), 5376–5385 (2018)

    Article  Google Scholar 

  2. Ahmed, M.E., Kim, D.I., Kim, J.Y., Shin, Y.: Energy-arrival-aware detection threshold in wireless-powered cognitive radio networks. IEEE Trans. Veh. Technol. 66(10), 9201–9213 (2017)

    Article  Google Scholar 

  3. Alcalá, J., Ureña, J., Hernández, Á., Gualda, D.: Event-based energy disaggregation algorithm for activity monitoring from a single-point sensor. IEEE Trans. Instrum. Meas. 66(10), 2615–2626 (2017)

    Article  Google Scholar 

  4. Andrean, V., Zhao, X., Teshome, D.F., Huang, T., Lian, K.: A hybrid method of cascade-filtering and committee decision mechanism for non-intrusive load monitoring. IEEE Access 6, 41212–41223 (2018)

    Article  Google Scholar 

  5. Aueb, M.T.R., Yau, C.: Hamming ball auxiliary sampling for factorial hidden Markov models. In: Advances in Neural Information Processing Systems, pp. 2960–2968 (2014)

    Google Scholar 

  6. Campbell, T., Kulis, B., How, J.: Dynamic clustering algorithms via small-variance analysis of Markov chain mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 41(6), 1338–1352 (2019)

    Article  Google Scholar 

  7. Chang, H., Lee, M., Lee, W., Chien, C., Chen, N.: Feature extraction-based hellinger distance algorithm for nonintrusive aging load identification in residential buildings. IEEE Trans. Ind. Appl. 52(3), 2031–2039 (2016)

    Article  Google Scholar 

  8. Dan, W., Li, H.X., Ce, Y.S.: Review of non-intrusive load appliance monitoring. In: 2018 Proceedings of the IEEE 3rd Advanced Information Technology Electronic and Automation Control Conference (IAEAC), pp. 18–23, October 2018

    Google Scholar 

  9. Diamantis, K., Dermitzakis, A., Hopgood, J.R., Sboros, V.: Super-resolved ultrasound echo spectra with simultaneous localization using parametric statistical estimation. IEEE Access 6, 14188–14203 (2018)

    Article  Google Scholar 

  10. Duarte, C., Delmar, P., Goossen, K.W., Barner, K., Gomez-Luna, E.: Non-intrusive load monitoring based on switching voltage transients and wavelet transforms. In: 2012 Future of Instrumentation International Workshop (FIIW), pp. 1–4. IEEE (2012)

    Google Scholar 

  11. Ducange, P., Marcelloni, F., Antonelli, M.: A novel approach based on finite-state machines with fuzzy transitions for nonintrusive home appliance monitoring. IEEE Trans. Ind. Inform. 10(2), 1185–1197 (2014)

    Article  Google Scholar 

  12. Egarter, D., Bhuvana, V.P., Elmenreich, W.: PALDi: online load disaggregation via particle filtering. IEEE Trans. Instrum. Meas. 64(2), 467–477 (2015)

    Article  Google Scholar 

  13. Erdil, E., Ghani, M.U., Rada, L., Argunsah, A.O., Unay, D., Tasdizen, T., Cetin, M.: Nonparametric joint shape and feature priors for image segmentation. IEEE Trans. Image Process. 26(11), 5312–5323 (2017)

    Article  MathSciNet  Google Scholar 

  14. Fan, W., Bouguila, N., Du, J., Liu, X.: Axially symmetric data clustering through dirichlet process mixture models of Watson distributions. IEEE Trans. Neural Netw. Learn. Syst. 30(6), 1683–1694 (2019)

    Article  MathSciNet  Google Scholar 

  15. Fan, W., Sallay, H., Bouguila, N.: Online learning of hierarchical Pitman-Yor process mixture of generalized dirichlet distributions with feature selection. IEEE Trans. Neural Netw. Learn. Syst. 28(9), 2048–2061 (2017)

    MathSciNet  Google Scholar 

  16. Figueiredo, M., Ribeiro, B., de Almeida, A.: Electrical signal source separation via nonnegative tensor factorization using on site measurements in a smart home. IEEE Trans. Instrum. Meas. 63(2), 364–373 (2014)

    Article  Google Scholar 

  17. Ford, G., et al.: Wireless network traffic disaggregation using Bayesian nonparametric techniques. In: 52nd Annual Conference on Information Sciences and Systems, CISS 2018, Princeton, NJ, USA, 21–23 March 2018, pp. 1–6. IEEE (2018)

    Google Scholar 

  18. Gael, J.V., Teh, Y.W., Ghahramani, Z.: The infinite factorial hidden Markov model. In: Advances in Neural Information Processing Systems, pp. 1697–1704 (2009)

    Google Scholar 

  19. Gillis, J.M., Alshareef, S.M., Morsi, W.G.: Nonintrusive load monitoring using wavelet design and machine learning. IEEE Trans. Smart Grid 7(1), 320–328 (2016)

    Article  Google Scholar 

  20. Hart, G.W.: Nonintrusive appliance load monitoring. Proc. IEEE 80(12), 1870–1891 (1992)

    Article  Google Scholar 

  21. He, K., Stankovic, L., Liao, J., Stankovic, V.: Non-intrusive load disaggregation using graph signal processing. IEEE Trans. Smart Grid PP(99), 1 (2017)

    Google Scholar 

  22. Hosseini, S.S., Kelouwani, S., Agbossou, K., Cardenas, A., Henao, N.: Adaptive on-line unsupervised appliance modeling for autonomous household database construction. Electr. Power Energy Syst. J. 112, 156–168 (2019)

    Article  Google Scholar 

  23. Iwayemi, A., Zhou, C.: SARAA: semi-supervised learning for automated residential appliance annotation. IEEE Trans. Smart Grid 8(2), 779–786 (2017)

    Google Scholar 

  24. Jia, R., Gao, Y., Spanos, C.J.: A fully unsupervised non-intrusive load monitoring framework. In: Proceedings of the IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 872–878, November 2015

    Google Scholar 

  25. Jing, L., He, C., Huang, J., Ding, Z.: Joint channel estimation and detection using Markov chain Monte Carlo method over sparse underwater acoustic channels. IET Commun. 11(11), 1789–1796 (2017)

    Article  Google Scholar 

  26. Kaselimi, M., Protopapadakis, E., Voulodimos, A., Doulamis, N., Doulamis, A.: Multi-channel recurrent convolutional neural networks for energy disaggregation. IEEE Access 7, 81047–81056 (2019)

    Article  Google Scholar 

  27. Khodayar, M., Mohammadi, S., Khodayar, M.E., Wang, J., Liu, G.: Convolutional graph autoencoder: a generative deep neural network for probabilistic spatio-temporal solar irradiance forecasting. IEEE Trans. Sustain. Energy 1 (2019)

    Google Scholar 

  28. Kim, H., Marwah, M., Arlitt, M., Lyon, G., Han, J.: Unsupervised disaggregation of low frequency power measurements. In: Proceedings of the 2011 SIAM International Conference on Data Mining, pp. 747–758. SIAM (2011)

    Google Scholar 

  29. Kim, M.S., Kim, S.R., Kim, J., Yoo, Y.: Design and implementation of MAC protocol for SmartGrid HAN environment. In: Proceedings of the IEEE 11th International Conference on Computer and Information Technology, pp. 212–217, August 2011

    Google Scholar 

  30. Kolter, J.Z., Batra, S., Ng, A.Y.: Energy disaggregation via discriminative sparse coding. In: Advances in Neural Information Processing Systems, pp. 1153–1161 (2010)

    Google Scholar 

  31. Kolter, J.Z., Jaakkola, T.: Approximate inference in additive factorial HMMs with application to energy disaggregation. In: Artificial Intelligence and Statistics, pp. 1472–1482 (2012)

    Google Scholar 

  32. Kolter, J.Z., Johnson, M.J.: REDD: a public data set for energy disaggregation research. In: Workshop on Data Mining Applications in Sustainability (SIGKDD), San Diego, CA, vol. 25, pp. 59–62 (2011)

    Google Scholar 

  33. Kong, W., Dong, Z.Y., Ma, J., Hill, D.J., Zhao, J., Luo, F.: An extensible approach for non-intrusive load disaggregation with smart meter data. IEEE Trans. Smart Grid 9(4), 3362–3372 (2018)

    Article  Google Scholar 

  34. Kong, W., Dong, Z.Y., Wang, B., Zhao, J., Huang, J.: A practical solution for non-intrusive type II load monitoring based on deep learning and post-processing. IEEE Trans. Smart Grid 1 (2019)

    Google Scholar 

  35. Kramer, O.: Non-intrusive appliance load monitoring with bagging classifiers (2015)

    Article  MathSciNet  Google Scholar 

  36. Lange, H., Bergés, M., Kolter, Z.: Neural variational identification and filtering for stochastic non-linear dynamical systems with application to non-intrusive load monitoring. In: 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), ICASSP 2019, pp. 8340–8344. IEEE (2019)

    Google Scholar 

  37. Lhéritier, A., Cazals, F.: A sequential non-parametric multivariate two-sample test. IEEE Trans. Inf. Theory 64(5), 3361–3370 (2018)

    Article  MathSciNet  Google Scholar 

  38. Lindsten, F., Jordan, M.I., Schön, T.B.: Particle Gibbs with ancestor sampling. J. Mach. Learn. Res. 15(1), 2145–2184 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Liu, B., Yu, Y., Luan, W., Zeng, B.: An unsupervised electrical appliance modeling framework for non-intrusive load monitoring. In: Proceedings of the IEEE Power Energy Society General Meeting, pp. 1–5, July 2017

    Google Scholar 

  40. Liu, B., Luan, W., Yu, Y.: Dynamic time warping based non-intrusive load transient identification. Appl. Energy 195, 634–645 (2017)

    Article  Google Scholar 

  41. Liu, Q., Kamoto, K.M., Liu, X., Sun, M., Linge, N.: Low-complexity non-intrusive load monitoring using unsupervised learning and generalized appliance models. IEEE Trans. Consum. Electron. 65(1), 28–37 (2019)

    Article  Google Scholar 

  42. Mei, J., He, D., Harley, R.G., Habetler, T.G.: Random forest based adaptive non-intrusive load identification. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN), pp. 1978–1983, July 2014

    Google Scholar 

  43. Meng, N., Sun, X., So, H.K., Lam, E.Y.: Computational light field generation using deep nonparametric Bayesian learning. IEEE Access 7, 24990–25000 (2019)

    Article  Google Scholar 

  44. Mesadi, F., Erdil, E., Cetin, M., Tasdizen, T.: Image segmentation using disjunctive normal Bayesian shape and appearance models. IEEE Trans. Med. Imaging 37(1), 293–305 (2018)

    Article  Google Scholar 

  45. Nalmpantis, C., Vrakas, D.: Machine learning approaches for non-intrusive load monitoring: from qualitative to quantitative comparation. Artif. Intell. Rev. 52(1), 217–243 (2019)

    Article  Google Scholar 

  46. Rahimpour, A., Qi, H., Fugate, D., Kuruganti, T.: Non-intrusive energy disaggregation using non-negative matrix factorization with sum-to-k constraint. IEEE Trans. Power Syst. 32(6), 4430–4441 (2017)

    Article  Google Scholar 

  47. Rashid, H., Singh, P., Stankovic, V., Stankovic, L.: Can non-intrusive load monitoring be used for identifying an appliance’s anomalous behaviour? Appl. Energy 238, 796–805 (2019)

    Article  Google Scholar 

  48. Ruiz, F.J.R., Valera, I., Svensson, L., Perez-Cruz, F.: Infinite factorial finite state machine for blind multiuser channel estimation. IEEE Trans. Cogn. Commun. Netw. 4(2), 177–191 (2018)

    Article  Google Scholar 

  49. Shin, C., Rho, S., Lee, H., Rhee, W.: Data requirements for applying machine learning to energy disaggregation. Energies 12(9), 1696 (2019)

    Article  Google Scholar 

  50. Tabatabaei, S.M., Dick, S., Xu, W.: Toward non-intrusive load monitoring via multi-label classification. IEEE Trans. Smart Grid 8(1), 26–40 (2017)

    Article  Google Scholar 

  51. Varela, P.M., Hong, J., Ohtsuki, T., Qin, X.: IGMM-based co-localization of mobile users with ambient radio signals. IEEE Internet Things J. 4(2), 308–319 (2017)

    Article  Google Scholar 

  52. Wang, W., Xi, J., Zhao, D.: Driving style analysis using primitive driving patterns with Bayesian nonparametric approaches. IEEE Trans. Intell. Transp. Syst. 1–13 (2018)

    Google Scholar 

  53. Xu, Y., Cheng, P., Chen, Z., Li, Y., Vucetic, B.: Mobile collaborative spectrum sensing for heterogeneous networks: a Bayesian machine learning approach. IEEE Trans. Sig. Process. 66(21), 5634–5647 (2018)

    Article  MathSciNet  Google Scholar 

  54. Yan, D., et al.: Household appliance recognition through a Bayes classification model. Sustain. Cities Soc. 46, 101393 (2019)

    Article  Google Scholar 

  55. Zaidi, A.A., Kupzog, F., Zia, T., Palensky, P.: Load recognition for automated demand response in microgrids. In: Proceedings of the IECON 2010–36th Annual Conference on IEEE Industrial Electronics Society, pp. 2442–2447, November 2010

    Google Scholar 

  56. Zhao, B., Stankovic, L., Stankovic, V.: On a training-less solution for non-intrusive appliance load monitoring using graph signal processing. IEEE Access 4, 1784–1799 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalthoum Zaouali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zaouali, K., Ammari, M.L., Chouaieb, A., Bouallegue, R. (2019). Dynamic IFFSM Modeling Using IFHMM-Based Bayesian Non-parametric Learning for Energy Disaggregation in Smart Solar Home System. In: Li, Q., Song, S., Li, R., Xu, Y., Xi, W., Gao, H. (eds) Broadband Communications, Networks, and Systems. Broadnets 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 303. Springer, Cham. https://doi.org/10.1007/978-3-030-36442-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36442-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36441-0

  • Online ISBN: 978-3-030-36442-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics