Skip to main content

Tunable Band Topology in Gyroscopic Lattices

  • Chapter
  • First Online:
Geometric Control of Fracture and Topological Metamaterials

Part of the book series: Springer Theses ((Springer Theses))

  • 428 Accesses

Abstract

Gyroscopic metamaterials, mechanical structures composed of interacting spinning tops, have recently been found to support one-way topological edge waves. In these structures, the time-reversal symmetry breaking that enables their topological behavior emerges directly from the lattice geometry. Here we show that variations in the lattice geometry can give rise to more complex band topology than has been previously described. A “spindle” lattice (or truncated hexagonal tiling) of gyroscopes possesses both clockwise and counterclockwise edge modes distributed across several band gaps. Tuning the interaction strength or twisting the lattice structure along a Guest mode opens and closes these gaps and yields bands with Chern numbers of |C| > 1 without introducing next-nearest-neighbor interactions or staggered potentials. A deformable honeycomb structure provides a simple model for understanding the role of lattice geometry in constraining the effects of time-reversal symmetry and inversion symmetry breaking. Last, we find that topological band structure generically arises in gyroscopic networks, and a simple protocol generates lattices with topological excitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Süsstrunk, S.D. Huber, Observation of phononic helical edge states in a mechanical topological insulator. Science 349(6243), 47–50 (2015)

    Article  ADS  Google Scholar 

  2. L.M. Nash, D. Kleckner, A. Read, V. Vitelli, A.M. Turner, W.T.M. Irvine, Topological mechanics of gyroscopic metamaterials. Proc. Nat. Acad. Sci. 112(47), 14495–14500 (2015)

    Article  ADS  Google Scholar 

  3. C.L. Kane, T.C. Lubensky, Topological boundary modes in isostatic lattices. Nat. Phys. 10(1), 39–45 (2013)

    Article  Google Scholar 

  4. R. Fleury, D.L. Sounas, C.F. Sieck, M.R. Haberman, A. Alù, Sound Isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343(6170), 516–519 (2014)

    Article  ADS  Google Scholar 

  5. D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49(6), 405–408 (1982)

    Article  ADS  Google Scholar 

  6. N.P. Mitchell, L.M. Nash, W.T.M. Irvine, Realization of a topological phase transition in a gyroscopic lattice. Phys. Rev. B 97(10), 100302 (2018)

    Google Scholar 

  7. N.P. Mitchell, L.M. Nash, W.T.M. Irvine, Tunable band topology in gyroscopic lattices. Phys. Rev. B 98(17), 174301 (2018)

    Google Scholar 

  8. N.P. Mitchell, L.M. Nash, D. Hexner, A.M. Turner, W.T.M. Irvine, Amorphous topological insulators constructed from random point sets. Nat. Phys. 14(4), 380–385 (2018)

    Article  Google Scholar 

  9. M.C. Rechtsman, J.M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, A. Szameit, Photonic floquet topological insulators. Nature 496(7444), 196–200 (2013)

    Article  ADS  Google Scholar 

  10. P. Wang, L. Lu, K. Bertoldi, Topological phononic crystals with one-way elastic edge waves. Phys. Rev. Lett. 115(10), 104302 (2015)

    Google Scholar 

  11. F.D.M. Haldane, Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “Parity Anomaly”. Phys. Rev. Lett. 61(18), 2015–2018 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  12. F.D.M. Haldane, S. Raghu, Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100(1), 013904 (2008)

    Google Scholar 

  13. R. Fleury, A.B. Khanikaev, A. Alù, Floquet topological insulators for sound. Nat. Commun. 7, 11744 (2016)

    Article  ADS  Google Scholar 

  14. A.B. Khanikaev, R. Fleury, S.H. Mousavi, A. Alù, Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice. Nat. Commun. 6, 8260 (2015)

    Article  ADS  Google Scholar 

  15. A. Souslov, B.C. van Zuiden, D. Bartolo, V. Vitelli, Topological sound in active-liquid metamaterials. Nat. Phys. 13(11), 1091–1094 (2017)

    Article  Google Scholar 

  16. S. Maayani, R. Dahan, Y. Kligerman, E. Moses, A.U. Hassan, H. Jing, F. Nori, D.N. Christodoulides, T. Carmon, Flying couplers above spinning resonators generate irreversible refraction. Nature 558(7711), 569–572 (2018)

    Article  ADS  Google Scholar 

  17. J.E. Avron, R. Seiler, B. Simon, Homotopy and quantization in condensed matter physics. Phys. Rev. Lett. 51(1), 51–53 (1983)

    Article  ADS  Google Scholar 

  18. R.B. Laughlin, Quantized Hall conductivity in two dimensions. Phys. Rev. B 23(10), 5632–5633 (1981)

    Article  ADS  Google Scholar 

  19. J.L. Mañes, F. Guinea, M.A.H. Vozmediano, Existence and topological stability of Fermi points in multilayered graphene. Phys. Rev. B 75(15), 155424 (2007)

    Google Scholar 

  20. N.W. Ashcroft, N.D. Mermin, Solid State Physics, 1st edn. (Cengage Learning, New York, 1976)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitchell, N. (2020). Tunable Band Topology in Gyroscopic Lattices. In: Geometric Control of Fracture and Topological Metamaterials. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-36361-1_5

Download citation

Publish with us

Policies and ethics