Skip to main content

Conforming Nanoparticle Sheets to Surfaces with Gaussian Curvature

  • Chapter
  • First Online:
Geometric Control of Fracture and Topological Metamaterials

Part of the book series: Springer Theses ((Springer Theses))

  • 547 Accesses

Abstract

Nanoparticle monolayer sheets are ultrathin inorganic-organic hybrid materials that combine highly controllable optical and electrical properties with mechanical flexibility and remarkable strength. Like other thin sheets, their low bending rigidity allows them to easily roll into or conform to cylindrical geometries. Nanoparticle monolayers not only can bend, but also cope with strain through local particle rearrangement and plastic deformation. This means that, unlike thin sheets such as paper or graphene, nanoparticle sheets can much more easily conform to surfaces with complex topography characterized by non-zero Gaussian curvature, like spherical caps or saddles. Here, we investigate the limits of nanoparticle monolayers’ ability to conform to substrates with Gaussian curvature by stamping nanoparticle sheets onto lattices of larger polystyrene spheres. Tuning the local Gaussian curvature by increasing the size of the substrate spheres, we find that the stamped sheet morphology evolves through three characteristic stages: from full substrate coverage, where the sheet extends over the interstices in the lattice, to coverage in the form of caps that conform tightly to the top portion of each sphere and fracture at larger polar angles, to caps that exhibit radial folds. Through analysis of the nanoparticle positions, obtained from scanning electron micrographs, we extract the local strain tensor and track the onset of strain-induced dislocations in the particle arrangement. By considering the interplay of energies for elastic and plastic deformations and adhesion, we construct arguments that capture the observed changes in sheet morphology as Gaussian curvature is tuned over two orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.R. Bausch, M.J. Bowick, A. Cacciuto, A.D. Dinsmore, M.F. Hsu, D.R. Nelson, M.G. Nikolaides, A. Travesset, D.A. Weitz, Grain boundary scars and spherical crystallography. Science 299(5613), 1716–1718 (2003)

    Article  ADS  Google Scholar 

  2. W.T.M. Irvine, V. Vitelli, P.M. Chaikin, Pleats in crystals on curved surfaces. Nature 468(7326), 947–951 (2010)

    Article  ADS  Google Scholar 

  3. G. Meng, J. Paulose, D.R. Nelson, V.N. Manoharan, Elastic instability of a crystal growing on a curved surface. Science 343(6171), 634–637 (2014)

    Article  ADS  Google Scholar 

  4. R.E. Guerra, C.P. Kelleher, A.D. Hollingsworth, P.M. Chaikin, Freezing on a sphere. Nature 554(7692), 346–350 (2018)

    Article  ADS  Google Scholar 

  5. V. Vitelli, J.B. Lucks, D.R. Nelson, Crystallography on curved surfaces. Proc. Nat. Acad. Sci. 103(33), 12323–12328 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  6. N.P. Mitchell, V. Koning, V. Vitelli, W.T.M. Irvine, Fracture in sheets draped on curved surfaces. Nat. Mater. 16(1), 89–93 (2017)

    Article  ADS  Google Scholar 

  7. N.P. Mitchell, R. Carey, J. Hannah, Y. Wang, M.C. Ruiz, S. McBride, X.-M. Lin, H. Jaeger, Conforming nanoparticle sheets to surfaces with Gaussian curvature. Soft Matter. 14, 9107–9117 (2018)

    Article  ADS  Google Scholar 

  8. D.P. Holmes, A.J. Crosby, Draping films: a Wrinkle to fold transition. Phys. Rev. Lett. 105(3), 038303 (2010)

    Google Scholar 

  9. J. Hure, B. Roman, J. Bico, Wrapping an adhesive sphere with an elastic sheet. Phys. Rev. Lett. 106(17), 174301 (2011)

    Google Scholar 

  10. S.M. Rupich, F.C. Castro, W.T.M. Irvine, D.V. Talapin, Soft epitaxy of nanocrystal superlattices. Nat. Commun. 5, 5045 (2014)

    Article  ADS  Google Scholar 

  11. L.D. Landau, E.M. Lifshitz, Chapter II-the equilibrium of rods and plates, in Theory of Elasticity, 3rd edn. (Butterworth-Heinemann, Oxford, 1986), pp. 38–86

    Google Scholar 

  12. J.D. Paulsen, V. Démery, C.D. Santangelo, T.P. Russell, B. Davidovitch, N. Menon, Optimal wrapping of liquid droplets with ultrathin sheets. Nat. Mater. 14(12), 1206–1209 (2015)

    Article  ADS  Google Scholar 

  13. Z. Yao, M. Bowick, X. Ma, R. Sknepnek, Planar sheets meet negative-curvature liquid interfaces. Europhys. Lett. 101(4), 44007 (2013)

    Article  ADS  Google Scholar 

  14. H. King, R.D. Schroll, B. Davidovitch, N. Menon, Elastic sheet on a liquid drop reveals wrinkling and crumpling as distinct symmetry-breaking instabilities. Proc. Natl. Acad. Sci. 109(25), 9716–9720 (2012)

    Article  ADS  Google Scholar 

  15. J. He, X.-M. Lin, H. Chan, L. Vukovic, P. Kràl, H.M. Jaeger, Diffusion and filtration properties of self-assembled gold nanocrystal membranes. Nano Lett. 11(6), 2430–2435 (2011)

    Article  ADS  Google Scholar 

  16. S.K. Hau, H.-L. Yip, N.S. Baek, J. Zou, K. O’Malley, A.K.-Y. Jen, Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Appl. Phys. Lett. 92(25), 253301 (2008)

    Article  ADS  Google Scholar 

  17. N. Olichwer, E.W. Leib, A.H. Halfar, A. Petrov, T. Vossmeyer, Cross-linked gold nanoparticles on polyethylene: resistive responses to tensile strain and vapors. ACS Appl. Mater. Interf. 4(11), 6151–6161 (2012)

    Article  Google Scholar 

  18. K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112(5), 2739–2779 (2012)

    Article  Google Scholar 

  19. A. Tricoli, S.E. Pratsinis, Dispersed nanoelectrode devices. Nat. Nanotechnol. 5(1), 54–60 (2010)

    Article  ADS  Google Scholar 

  20. C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, S. Gwo, Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: Evidence of near-field coupling. J. Amer. Chem. Soc. 130(3), 824–826 (2008)

    Article  Google Scholar 

  21. G. Yang, L. Hu, T.D. Keiper, P. Xiong, D.T. Hallinan, Gold nanoparticle monolayers with tunable optical and electrical properties. Langmuir 32(16), 4022–4033 (2016)

    Article  Google Scholar 

  22. S. Chen, R.S. Ingram, M.J. Hostetler, J.J. Pietron, R.W. Murray, T.G. Schaaff, J.T. Khoury, M.M. Alvarez, R.L. Whetten, Gold nanoelectrodes of varied size: transition to molecule-like charging. Science 280(5372), 2098–2101 (1998)

    Article  ADS  Google Scholar 

  23. M.-C. Daniel, D. Astruc, Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104(1), 293–346 (2004)

    Article  Google Scholar 

  24. Z. Nie, A. Petukhova, E. Kumacheva, Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 5(1), 15–25 (2010)

    Article  ADS  Google Scholar 

  25. A. Dong, J. Chen, P.M. Vora, J.M. Kikkawa, C.B. Murray, Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface. Nature 466(7305), 474–477 (2010)

    Article  ADS  Google Scholar 

  26. K.E. Mueggenburg, X.-M. Lin, R.H. Goldsmith, H.M. Jaeger, Elastic membranes of close-packed nanoparticle arrays. Nat. Mater. 6(9), 656–660 (2007)

    Article  ADS  Google Scholar 

  27. K.M. Salerno, D.S. Bolintineanu, J.M.D. Lane, G.S. Grest, High strength, molecularly thin nanoparticle membranes. Phys. Rev. Lett. 113(25), 258301 (2014)

    Google Scholar 

  28. Y. Wang, J. Liao, S.P. McBride, E. Efrati, X.-M. Lin, H.M. Jaeger, Strong resistance to bending observed for nanoparticle membranes. Nano Lett. 15(10), 6732–6737 (2015)

    Article  ADS  Google Scholar 

  29. Y. Wang, P. Kanjanaboos, E. Barry, S. Mcbride, X.-M. Lin, H.M. Jaeger, Fracture and failure of nanoparticle monolayers and multilayers. Nano Lett. 14(2), 826–830 (2014)

    Article  ADS  Google Scholar 

  30. J. Hure, B. Roman, J. Bico, Stamping and wrinkling of elastic plates. Phys. Rev. Lett. 109(5), 054302 (2012)

    Google Scholar 

  31. L.H. Dudte, E. Vouga, T. Tachi, L. Mahadevan, Programming curvature using origami tessellations. Nat. Mater. 15(5), 583–588 (2016)

    Article  ADS  Google Scholar 

  32. P. Kanjanaboos, A. Joshi-Imre, X.-M. Lin, H.M. Jaeger, Strain patterning and direct measurement of Poisson’s ratio in nanoparticle monolayer sheets. Nano Lett. 11(6), 2567–2571 (2011)

    Article  ADS  Google Scholar 

  33. L.A. Girifalco, R.J. Good, A theory for the estimation of surface and interfacial energies. I. Derivation and application to interfacial tension. J. Phys. Chem. 61(7), 904–909 (1957)

    Google Scholar 

  34. S. Wu, Calculation of interfacial tension in polymer systems. J. Polym. Sci., Part C: Polym. Symp. 34(1), 19–30 (2007)

    Article  Google Scholar 

  35. J. He, P. Kanjanaboos, N.L. Frazer, A. Weis, X.-M. Lin, H.M. Jaeger, Fabrication and mechanical properties of large-scale freestanding nanoparticle membranes. Small 6(13), 1449–1456 (2010)

    Article  Google Scholar 

  36. Y. Wang, H. Chan, B. Narayanan, S.P. McBride, S.K.R.S. Sankaranarayanan, X.-M. Lin, H.M. Jaeger, Thermomechanical response of self-assembled nanoparticle membranes. ACS Nano 11(8), 8026–8033 (2017)

    Article  Google Scholar 

  37. S.D. Griesemer, S.S. You, P. Kanjanaboos, M. Calabro, H.M. Jaeger, S.A. Rice, B. Lin, The role of ligands in the mechanical properties of Langmuir nanoparticle films. Soft Matt. 13(17), 3125–3133 (2017)

    Article  ADS  Google Scholar 

  38. J.C. Crocker, D.G. Grier, Methods of digital video microscopy for colloidal studies. J. Colloid and Interface Sci. 179(1), 298–310 (1996)

    Article  ADS  Google Scholar 

  39. J. Weertman, J. Weertman, Elementary Dislocation Theory (Oxford University Press, Oxford, 1992)

    MATH  Google Scholar 

  40. L. Pocivavsek, R. Dellsy, A. Kern, S. Johnson, B. Lin, K.Y.C. Lee, E. Cerda, Stress and fold localization in thin elastic membranes. Science 320(5878), 912–916 (2008)

    Article  ADS  Google Scholar 

  41. P. Kim, M. Abkarian, H.A. Stone, Hierarchical folding of elastic membranes under biaxial compressive stress. Nat. Mater. 10(12), 952–957 (2011)

    Article  ADS  Google Scholar 

  42. D. Vella, B. Davidovitch, Regimes of wrinkling in an indented floating elastic sheet. Phys. Rev. E 98(1), 013003 (2018)

    Google Scholar 

  43. C. Androulidakis, K. Zhang, M. Robertson, S. Tawfick, Tailoring the mechanical properties of 2D materials and heterostructures. 2D Mater. 5(3), 032005 (2018)

    Article  Google Scholar 

  44. K. Kang, K.-H. Lee, Y. Han, H. Gao, S. Xie, D.A. Muller, J. Park, Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550(7675), 229–233 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitchell, N. (2020). Conforming Nanoparticle Sheets to Surfaces with Gaussian Curvature. In: Geometric Control of Fracture and Topological Metamaterials. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-36361-1_3

Download citation

Publish with us

Policies and ethics