Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 432 Accesses

Abstract

Geometry is not only a language to explain phenomena of the natural world, but also a tool to organize and trigger specific behaviors in material systems. As Jean le Rond D’Alembert wrote in 1752, “Geometry, which must obey Physics only when it meets with it, sometimes commands it”. In patterned liquid crystals, DNA lattices, colloidal crystals, and classic models of phase transitions, geometric constraints offer a mechanism to drive the order and dynamics of soft matter systems, both in and out of equilibrium. When curvature acts as the driving constraint on a two-dimensional material, that material’s constituents may no longer tile their preferred local arrangement throughout curved space (Fig. 1.1). The material may respond elastically by stretching and compressing to accommodate its new geometry, or by forming defects such as dislocations and disclinations. Might we similarly use curvature to guide the material failure of thin elastic materials conformed to corrugated surfaces?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.L.R. D’Alembert, J.S. Calero (eds.), A New Theory of the Resistance of Fluids (Springer, Berlin, 1752)

    MATH  Google Scholar 

  2. M.J. Bowick, L. Giomi, Two-dimensional matter: order, curvature and defects. Adv. Phys. 58(5), 449–563 (2009)

    Article  ADS  Google Scholar 

  3. G.A. DeVries, M. Brunnbauer, Y. Hu, A.M. Jackson, B. Long, B.T. Neltner, O. Uzun, B.H. Wunsch, F. Stellacci, Divalent metal nanoparticles. Science 315(5810), 358–361 (2007)

    Article  ADS  Google Scholar 

  4. F.C. Keber, E. Loiseau, T. Sanchez, S.J. DeCamp, L. Giomi, M.J. Bowick, M.C. Marchetti, Z. Dogic, A.R. Bausch, Topology and dynamics of active nematic vesicles. Science 345(6201), 1135–1139 (2014)

    Article  ADS  Google Scholar 

  5. S. Shankar, M.J. Bowick, M.C. Marchetti. Topological sound and flocking on curved surfaces. Phys. Rev. X 7(3), 031039 (2017)

    Google Scholar 

  6. E. Winfree, F. Liu, L.A. Wenzler, N.C. Seeman, Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)

    Article  ADS  Google Scholar 

  7. N.C. Seeman, DNA in a material world. Nature 421(6921), 427–431 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  8. A.R. Bausch, M.J. Bowick, A. Cacciuto, A.D. Dinsmore, M.F. Hsu, D.R. Nelson, M.G. Nikolaides, A. Travesset, D.A. Weitz, Grain boundary scars and spherical crystallography. Science 299(5613), 1716–1718 (2003)

    Article  ADS  Google Scholar 

  9. W.T.M. Irvine, V. Vitelli, P.M. Chaikin, Pleats in crystals on curved surfaces. Nature 468(7326), 947–951 (2010)

    Article  ADS  Google Scholar 

  10. I.R. Bruss, S.C. Glotzer, Curvature-induced microswarming. Soft Matter 13(30), 5117–5121 (2017)

    Article  ADS  Google Scholar 

  11. G. Meng, J. Paulose, D.R. Nelson, V.N. Manoharan, Elastic instability of a crystal growing on a curved surface. Science 343(6171), 634–637 (2014)

    Article  ADS  Google Scholar 

  12. R.E. Guerra, C.P. Kelleher, A.D. Hollingsworth, P.M. Chaikin, Freezing on a sphere. Nature 554(7692), 346–350 (2018)

    Article  ADS  Google Scholar 

  13. V. Vitelli, J.B. Lucks, D.R. Nelson, Crystallography on curved surfaces. Proc. Nat. Acad. Sci. 103(33), 12323–12328 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  14. W.E. Baker, Axisymmetric modes of vibration of thin spherical shell. J. Acoust. Soc. Am. 33(12), 1749–1758 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  15. R. Süsstrunk, S.D. Huber, Observation of phononic helical edge states in a mechanical topological insulator. Science 349(6243), 47–50 (2015)

    Article  ADS  Google Scholar 

  16. L.M. Nash, D. Kleckner, A. Read, V. Vitelli, A.M. Turner, W.T.M. Irvine, Topological mechanics of gyroscopic metamaterials. Proc. Nat. Acad. Sci. 112(47), 14495–14500 (2015)

    Article  ADS  Google Scholar 

  17. S.D. Huber, Topological mechanics. Nat. Phys. 12(7), 621–623 (2016)

    Article  Google Scholar 

  18. M. Fruchart, D. Carpentier, An introduction to topological insulators. C. R. Phys. 14(9), 779–815 (2013)

    Article  ADS  Google Scholar 

  19. Google. Missouri Botanical Garden, Shaw Blvd, St. Louis, MO, (2018)

    Google Scholar 

  20. J.-Y. Sgro, Human Papillomavirus 16 L1 (T=7d) capsid Model, PBD code 1l0t (2009)

    Google Scholar 

  21. Y. Modis, B.L. Trus, S.C. Harrison, Atomic model of the papillomavirus capsid. EMBO J. 21(18), 4754–4762 (2002)

    Article  Google Scholar 

  22. SYBYL, Tripos International, Tripos.com

    Google Scholar 

  23. M. Tarini, P. Cignoni, C. Montani, Ambient occlusion and edge cueing for enhancing real time molecular visualization. IEEE Trans. Vis. Comput. Graph. 12(5), 1237–1244 (2006)

    Article  Google Scholar 

  24. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Microscopic theory of superconductivity. Phys. Rev. 106(1), 162–164 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  25. N. Xu, V. Vitelli, M. Wyart, A.J. Liu, S.R. Nagel, Energy transport in Jammed sphere packings. Phys. Rev. Lett. 102(3), 038001 (2009)

    Google Scholar 

  26. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Metamaterials and negative refractive index. Science 305(5685), 788–792 (2004)

    Article  ADS  Google Scholar 

  27. S.A. Cummer, J. Christensen, A. Alù, Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1(3), 16001 (2016)

    Google Scholar 

  28. R. Lakes, Foam structures with a negative poisson’s ratio. Science 235(4792), 1038–1040 (1987)

    Article  ADS  Google Scholar 

  29. J.W. Rocks, N. Pashine, I. Bischofberger, C.P. Goodrich, A.J. Liu, S.R. Nagel, Designing allostery-inspired response in mechanical networks. Proc. Natl. Acad. Sci. 114, 201612139 (2017)

    Article  Google Scholar 

  30. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of 𝜖 and μ. Sov. Phys. Uspekhi 10(4), 509 (1968)

    Google Scholar 

  31. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292(5514), 77–79 (2001)

    Article  ADS  Google Scholar 

  32. C.L. Kane, T.C. Lubensky, Topological boundary modes in isostatic lattices. Nat. Phys. 10(1), 39–45 (2013)

    Article  Google Scholar 

  33. C. He, X. Ni, H. Ge, X.-C. Sun, Y.-B. Chen, M.-H. Lu, X.-P. Liu, Y.-F. Chen, Acoustic topological insulator and robust one-way sound transport. Nat. Phys. 12(12), 1124–1129 (2016)

    Article  Google Scholar 

  34. M. Brun, I.S. Jones, A.B. Movchan, Vortex-type elastic structured media and dynamic shielding. Proc. R. Soc. A 468, rspa20120165 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  35. R. Fleury, D.L. Sounas, C.F. Sieck, M.R. Haberman, A. Alù, Sound Isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343(6170), 516–519 (2014)

    Article  ADS  Google Scholar 

  36. C. Coulais, D. Sounas, A. Alù, Static non-reciprocity in mechanical metamaterials. Nature 542(7642), 461–464 (2017)

    Article  ADS  Google Scholar 

  37. A. Souslov, K. Dasbiswas, M. Fruchart, S. Vaikuntanathan, V. Vitelli, Topological waves in fluids with odd viscosity. Phys. Rev. Lett. 112(12), (2019)

    Google Scholar 

  38. D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49(6), 405–408 (1982)

    Article  ADS  Google Scholar 

  39. N.P. Mitchell, V. Koning, V. Vitelli, W.T.M. Irvine, Fracture in sheets draped on curved surfaces. Nat. Mater. 16(1), 89–93 (2017)

    Article  ADS  Google Scholar 

  40. N.P. Mitchell, R. Carey, J. Hannah, Y. Wang, M.C. Ruiz, S. McBride, X.-M. Lin, H. Jaeger, Conforming nanoparticle sheets to surfaces with Gaussian curvature. Soft Matter. 14, 9107–9117 (2018)

    Article  ADS  Google Scholar 

  41. N.P. Mitchell, L.M. Nash, W.T.M. Irvine, Realization of a topological phase transition in a gyroscopic lattice. Phys. Rev. B 97(10), 100302 (2018)

    Google Scholar 

  42. N.P. Mitchell, L.M. Nash, D. Hexner, A.M. Turner, W.T.M. Irvine, Amorphous topological insulators constructed from random point sets. Nat. Phys. 14(4), 380–385 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitchell, N. (2020). Introduction. In: Geometric Control of Fracture and Topological Metamaterials. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-36361-1_1

Download citation

Publish with us

Policies and ethics