Skip to main content

Soil Microbes-Medicinal Plants Interactions: Ecological Diversity and Future Prospect

  • Chapter
  • First Online:
Plant Microbe Symbiosis

Abstract

Plants live in association with microbes in both above- and belowground part, as some are beneficial and some are harmful to the plant. Microbes which are found within the plant tissue, namely, endophytes, can have beneficial, neutral, or detrimental effects on plant health and development. Several works have been done on plant-microbe interactions and microbial diversity of rhizospheric region of medicinal plants. Therefore, plant secondary metabolite and root exudates which include various sugars and organic acids influence biogeochemical reactions and thus plant metabolism. Signaling molecules like strigolactones induce the colonization of the mycorrhiza fungi with plant root and stimulate the germination of the parasitic plant such as Striga. Similarly, the flavonoids secreted by leguminous roots increase the growth of symbiotic and nonsymbiotic nitrogen-fixing bacteria and also attract pathogenic oomycetes as well. Root-associated microflora and endophytes (fungi or bacteria) help plant growth by secreting the plant hormone (auxin/cytokinin) and nutrients like phosphorus, nitrogen, and iron. Microbial association with root may induce plant resistance against the several biotic and abiotic stresses, such as toxic metals, pathogens, drought, high temperature, saline soils, adverse soil pH, and transplant shock. Study the plant-microbe interaction in the era of next-generation sequencing opens a new way to understand their association as well as help in improvement of sustainable agriculture. Finding answers of these questions “Who is there?” and “What are they doing?” extended by “How do they live under given conditions?”, “How do they respond to environmental changes and perturbations?”, “How do they interact with each other?”, and “How do they affect plant growth and development?” may be used in the future to support plant growth and improve crop yield. Exploration of endophytic or rhizospheric microbes in the future for enhancement of secondary metabolites in medicinal plants might be a new vista opened for the sustainable agriculture practices. In this chapter, we will focus our attention to the role of medicinal plant-microbe interaction to root and shoot in positive and negative aspect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Salam E, Alatar A, El-Sheikh MA (2017) Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi J Biol Sci 25:1772–1780. https://doi.org/10.1016/j.sjbs.2017.10.015

    Article  PubMed  PubMed Central  Google Scholar 

  • Abeer H, Salwa AA, Alqarawi AA, Allah EE, Egamberdieva D (2016) Arbuscular mycorrhizal fungi enhance basil tolerance to salt stress through improved physiological and nutritional status. Pak J Bot 48:37–45

    CAS  Google Scholar 

  • Adesemoye AO, Egamberdieva D (2013) Beneficial effects of plant growth-promoting rhizobacteria on improved crop production: prospects for developing economies. In: Maheshwari DK, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin, pp 45–63

    Chapter  Google Scholar 

  • Ahmed EA, Hassan EA, El Tobgy KM, Ramadan EM (2014) Evaluation of rhizobacteria of some medicinal plants for plant growth promotion and biological control. Ann Agric Sci 59:273–280

    Article  Google Scholar 

  • Akter S, Jo H, Du J, Won K, Yin CS, Kook M, Yu H, Choi HS, Kim MK, Yi TH (2015) Pseudoxanthomonashumi sp. nov., a bacterium isolated from rhizospheric soil of Fraxinus chinensis in Gyeonggi Province, South Korea. Arch Microbiol 197:1165–1172

    Article  CAS  PubMed  Google Scholar 

  • Andrew DR, Fitak RR, Munguia-Vega A, Racolta A, Martinson VG, Dontsova K (2012) Abiotic factors shape microbial diversity in Sonoran Desert soils. Appl Environ Microbiol 78:7527–7537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appoloni S, Lekberg Y, Tercek MT, Zabinski CA, Redecker D (2008) Molecular community analysis of arbuscular mycorrhizal fungi in roots of geothermal soils in Yellowstone National Park (USA). Microb Ecol 56:649–659

    Article  PubMed  Google Scholar 

  • Araim G, Saleem A, Arnason JT, Charest AC (2009) Root colonization by an arbuscular mycorrhizal (AM) fungus increases growth and secondary metabolism of purple coneflower. Echinacea purpurea L. Moench. J Agric Food Chem 57:2255–2258

    Article  CAS  PubMed  Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677

    Google Scholar 

  • Awasthi A, Bharti N, Nair P, Singh R, Shukla AK, Gupta MM, Darokar MP, Kalra A (2011) Synergistic effect of Glomus mosseae and nitrogen fixing Bacillus subtilis strain Daz26 on artemisinin content in Artemisia annua L. Appl Soil Ecol 49:125–130

    Article  Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473

    Article  PubMed  PubMed Central  Google Scholar 

  • Bafana A, Lohiya R (2013) Diversity and metabolic potential of culturable root-associated bacteria from Origanum vulgare in sub-Himalayan region. World J Microbiol Biotechnol 29:63–74

    Article  CAS  PubMed  Google Scholar 

  • Bagde US, Prasad R, Varma A (2010) Interaction of Piriformospora indica with medicinal plants and of economic importance. Afr J Biotechnol 9:9214–9226

    Google Scholar 

  • Beattie GA (2015) Microbiomes: curating communities from plants. Nature 528:340–341

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  • Cai BY, Ge QP, Jie WG, Yan XF (2009) The community composition of the arbuscular mycorrhizal fungi in the rhizosphere of Phellodendron amurense. Mycosystema 28:512–520

    CAS  Google Scholar 

  • Cao C, Sun Y, Wu B, Zhao S, Yuan B, Qin S, Jiang J, Huang, Y (2018) Actinophytocola glycyrrhizae sp. nov. isolated from the rhizosphere of Glycyrrhiza inflata. Int J Syst Evol Microbiol 68:2504–2508

    Google Scholar 

  • Chandra KK, Kumar N, Chand G (2010) Studies on mycorrhizal inoculation on dry matter yield and root colonization of some medicinal plants grown in stress and forest soils. J Environ Biol 31:975–979

    CAS  PubMed  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Chatterjee S, Dutta S (2010) A survey on VAM association in three different species of Cassia and determination of antimicrobial property of these phytoextracts. J Med Plant Res 4:286–292

    Google Scholar 

  • Chen Q, Liu B, Wang J, Che J, Liu G, Guan X (2016) Antifungal lipopeptides produced by Bacillus sp. FJAT-14262 isolated from rhizosphere soil of the medicinal plant Anoectochilus roxburghii. Appl Biochem Biotechnol 182:155–167

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Li J, Zhu H, Xu P, Chen J, Yao Q (2017a) Arbuscular mycorrhizal fungus enhances lateral root formation in Poncirus trifoliata (L.) as revealed by RNA-Seq analysis. Front Plant Sci 8:2039. https://doi.org/10.3389/fpls.2017.02039

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J, Wu L, Xiao Z, Wu Y, Wu H, Qin X, Wang J, Wei X, Khan MU, Lin S, Lin W (2017b) Assessment of the diversity of Pseudomonas spp. and Fusarium spp. in Radix pseudostellariae rhizosphere under monoculture by combining DGGE and quantitative PCR. Front Microbiol 8:1748

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiellini C, Maida I, Emiliani G, Mengoni A, Mocali S, Fabiani A, Biffi S, Maggini V, Gori L, Vannacci A, Gallo E, Firenzuoli F, Fani R (2014) Endophytic and rhizospheric bacterial communities isolated from the medicinal plants Echinacea purpurea and Echinacea angustifolia. Int Microbiol 17:165–174

    CAS  PubMed  Google Scholar 

  • Cho EJ, Lee DJ, Wee CD, Kim HL, Cheong YH, Cho JS, Sohn BK (2009) Effects of AM fungi inoculation on growth of Panax ginseng C.A. Meyer seedlings and on soil structures in mycorrhizosphere. Sci Hortic 122:633–637

    Article  CAS  Google Scholar 

  • Cloete KJ, Valentine AJ, Stander MA, Blomerus LM, Botha A (2009) Evidence of symbiosis between the soil yeast Cryptococcus laurentii and a Sclerophyllous medicinal shrub, Agathosma betulina (Berg.) Pillans. Microb Ecol 57:624–632

    Article  PubMed  Google Scholar 

  • Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485–494

    Article  CAS  PubMed  Google Scholar 

  • Costa R, Gotz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56:236–249

    Article  CAS  PubMed  Google Scholar 

  • Dai CC, Xie H, Wang XX, Li PD, Zhang TL, Li YL, Tan X (2009) Intercropping peanut with traditional Chinese medicinal plants improves soil microcosm environment and peanut production in subtropical China. Afr J Biotechnol 8:3739–3746

    CAS  Google Scholar 

  • Dai CC, Chen Y, Wang XX, Li PD (2013) Effects of intercropping of peanut with the medicinal plant Atractylodes lancea on soil microecology and peanut yield in subtropical China. Agrofor Syst 87:417–426

    Article  Google Scholar 

  • Das A, Prasad R, Srivastava A, Giang PH, Bhatnagar K, Varma A (2007) Fungal siderophores: structure, functions and regulations. In: Varma A, Chincholkar SB (eds) Microbial siderophores, vol 12. Springer-Verlag, Berlin, pp 1–42

    Chapter  Google Scholar 

  • Das A, Prasad R, Srivastava RB, Deshmukh S, Rai MK, Varma A (2013) Co-cultivation of Piriformospora indica with medicinal plants: case studies. In: Varma A, Kost G, Oelmuller R (eds) Piriformospora indica: Sebacinales and their biotechnological applications. Springer-Verlag, Berlin, pp 149–171

    Chapter  Google Scholar 

  • de Almeida Lopes KB, Carpentieri-Pipolo V, Oro TH, Stefani Pagliosa E, Degrassi G (2016) Culturable endophytic bacterial communities associated with field-grown soybean. J Appl Microbiol 120:740–755

    Article  CAS  PubMed  Google Scholar 

  • Debnath R, Yadav A, Gupta VK, Singh BP, Handique PJ, Saikia R (2016) Rhizospheric bacterial community of endemic Rhododendron arboreum Sm. Ssp. delavayi along Eastern Himalayan Slope in Tawang. Front Plant Sci 7:1345

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong LL, Niu WH, Wang R, Xu J, Zhang LJ, Zhang J, Chen SL (2017) Changes of diversity and composition of fungal communities in rhizosphere of Panax ginseng. Zhongguo Zhong Yao Za Zhi 42:443–449

    PubMed  Google Scholar 

  • Dutta J, Thakur D (2017) Evaluation of multifarious plant growth promoting traits, antagonistic potential and phylogenetic affiliation of rhizobacteria associated with commercial tea plants grown in Darjeeling, India. PLoS One 12(8):e0182302

    Article  PubMed  PubMed Central  Google Scholar 

  • Egamberdieva D, Islam KR (2008) Salt tolerant rhizobacteria: plant growth promoting traits and physiological characterization within ecologically stressed environment. Wiley, Weinheim, pp 257–281

    Google Scholar 

  • Egamberdieva D, Jabborova D, Mamadalieva N (2013a) Salt tolerant Pseudomonas extremorientalis able to stimulate growth of Silybum marianum under salt stress. Med Aromat Plant Sci Biotechnol 7:7–10

    Google Scholar 

  • Egamberdieva D, Berg G, Lindström K, Räsänen LA (2013b) Alleviation of salt stress of symbiotic Galega officinalis L. (goat’s rue) by co-inoculation of rhizobium with root-colonizing Pseudomonas. Plant Soil 369:453–465

    Article  CAS  Google Scholar 

  • Egamberdieva D, Wirth S, Li L, Abd-Allah EF, Lindström K (2017) Microbial cooperation in the rhizosphere improves liquorice growth under salt stress. Bioengineered 8:433–438

    Article  CAS  PubMed  Google Scholar 

  • El-Deeb B, Fayez K, Gherbawy Y (2013) Isolation and characterization of endophytic bacteria from Plectranthus tenuiflorus medicinal plant in Saudi Arabia desert and their antimicrobial activities. J Plant Interact 8:56–64

    Article  CAS  Google Scholar 

  • Farh ME, Kim YJ, Sukweenadhi J, Singh P, Yang DC (2017) Aluminium resistant, plant growth promoting bacteria induce overexpression of aluminium stress related genes in Arabidopsis thaliana and increase the ginseng tolerance against aluminium stress. Microbiol Res 200:45–52

    Article  CAS  PubMed  Google Scholar 

  • Garcia A, Polonio J, Polli A, Santos C, Rhoden S, Quecine M, Azevedo JL, Pamphile JA (2016) Rhizosphere bacteriome of the medicinal plant Sapindus saponaria L. revealed by pyrosequencing. Genet Mol Res 15:1–9

    Google Scholar 

  • Geneva MP, Stancheva IV, Boychinova MB, Mincheva NH, Yonova PA (2010) Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. J Sci Food Agric 90:696–702

    CAS  PubMed  Google Scholar 

  • Gogoi P, Singh RK (2011) Differential effect of some arbuscular mycorrhizal fungi on growth of Piper longum L. (Piperaceae). Ind J Sci Technol 4:119–125

    Google Scholar 

  • Gorsi MS (2002) Studies on mycorrhizal association in some medicinal plants of Azad Jammu and Kashmir. Asian J Plant Sci 1:383–387

    Article  Google Scholar 

  • Guo DZ, Chen J, Du XP, Han BX (2010) Screening of molluscicidal strain against Oncomelania hupensis from the rhizosphere of medicinal plant Phytolacca acinosa Roxb. Pharmacogn Mag 6:159–165

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta ML, Prasad A, Ram M, Kumar S (2002) Effect of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Bioresour Technol 81:77–79

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Bisht S, Singh B, Gulati A, Tewari R (2011) Enhanced biomass and steviol glycosides in Stevia rebaudiana treated with phosphate-solubilizing bacteria and rock phosphate. Plant Growth Regul 65:449–457

    Article  CAS  Google Scholar 

  • Gupta M, Kiran S, Gulati A, Singh B, Tewari R (2012) Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis Miller. Microbiol Res 167:358–363

    Article  CAS  PubMed  Google Scholar 

  • Hao DC, Zhang CR, Xiao PG (2018) The first Taxus rhizosphere microbiome revealed by shotgun metagenomic sequencing. J Basic Microbiol 58:501–512

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadah F, Satei A, Ramezanpour (2011) Effects of mycorrhiza and plant growth promoting rhizobacteria on growth, nutrient uptake and physiological characteristics in Calendula officinalis L. Middle East J Sci Res 8(5):947–953

    CAS  Google Scholar 

  • Hussain SA, Srinivas P (2013) Association of arbuscular mycorrhizal fungi and other rhizosphere microbes with different medicinal plants. Res J Biotechnol 8:24–28

    Google Scholar 

  • Impullitti AE, Malvick DK (2013) Fungal endophyte diversity in soybean. J Appl Microbiol 114:1500–1506

    Article  CAS  PubMed  Google Scholar 

  • Jaleel CA, Manivavannan P, Sankar P, Krishnakumar B, Gopi AR, Somasundaram R, Pannerselvam (2007) Pseudomonas fluorescens enhances biomass yield and Ajmalicine production in Catharanthus roseus under water deficit stress. Colloid Surf B Biointerfaces 60:7–11

    Article  CAS  PubMed  Google Scholar 

  • Johnson MP, Stephan R (2016) Association of arbuscular mycorrhizal fungi and other rhizosphere microbes with different medicinal plants in the calcareous soil of Ariyalur District, India. Int J Curr Mirobiol App Sci 5(9):659–666

    Article  Google Scholar 

  • Joy P, Thomos J, Mathew S, Skaria BP (1998) Medicinal plants. Kerala Agricultural University Press, Kerala

    Google Scholar 

  • Jurkiewicz A, Ryszka P, Anielska T, Waligorski P, Białon’ska D, Goralska K, Michael MT, Turnau K (2010) Optimization of culture conditions of Arnica montana L: effects of mycorrhizal fungi and competing plants. Mycorrhiza 20:293–306

    Article  PubMed  Google Scholar 

  • Katiyar D, Hemantaranjan A, Singh B (2016) Plant growth promoting rhizobacteria-an efficient tool for agriculture promotion. Adv Plants Agric Res 4:426–434

    Google Scholar 

  • Khaliel AS, Shine K, Vijayakumar K (2011) Salt tolerance and mycorrhization of Bacopa monneiri grown under sodium chloride saline conditions. Afr J Microbiol Res 5:2034–2040

    Article  CAS  Google Scholar 

  • Khamna S, Yokota A, Lumyong S (2009) Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25:649–655

    Article  CAS  Google Scholar 

  • Khan WU, Ahmad SR, Yasin NA, Ali A, Ahmad A, Akram W (2017a) Application of Bacillus megaterium MCR-8 improved phytoextraction and stress alleviation of nickel in Vinca rosea. Int J Phytoremediation 19:813–824

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Asaf S, Al-Rawahi A, Lee I-J, Al-Harrasi A (2017b) Rhizospheric microbial communities associated with wild and cultivated frankincense producing Boswellia sacra tree. PLoS One 12(10):e0186939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knief C (2014) Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front Plant Sci 5:216

    Article  PubMed  PubMed Central  Google Scholar 

  • Koeberl M, Schmidt R, Ramadan EM, Bauer R, Berg G (2013) The microbiome of medicinal plants: diversity and importance for plant growth, quality, and health. Front Microbiol 4:400

    Google Scholar 

  • Kumar G, Kanaujia N, Bafana A (2012) Functional and phylogenetic diversity of root-associated bacteria of Ajuga bracteosa in Kangra valley. Microbiol Res 167:220–225

    Article  PubMed  Google Scholar 

  • Kumar P, Pagano M, O’donovan A (2017) Mycosphere essay 18: biotechnological advances of beneficial fungi for plants. Mycosphere 8:445–455

    Article  Google Scholar 

  • Lakshmanan V, Selvaraj G, Bais HP (2014) Functional soil microbiome: belowground solutions to an aboveground problem. Plant Physiol 166:689–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HR, Han SI, Rhee KH, Whang KS (2013) Mucilaginibacter herbaticus sp. nov., isolated from the rhizosphere of the medicinal plant Angelica sinensis. Int J Syst Evol Microbiol 63:2787–2793

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Fuentes E, Ruiz-Valdiviezo VM, Martinez-Romero E, Gutierrez-Miceli FA, Dendooven L, Rincon-Rosales R (2012) Bacterial community in the roots and rhizosphere of Hypericum silenoides Juss. 1804. Afr J Microbiol Res 6:2704–2711

    Article  CAS  Google Scholar 

  • Mamta RP, Pathania V, Gulati A, Singh B, Bhanwra RK, Tewari R (2010) Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside and rebaudioside-A contents of Stevia rebaudiana Bertoni. Appl Soil Ecol 46:222–229

    Article  Google Scholar 

  • Mansoor F, Sultana V, Ehteshamul-Haque S (2007) Enhancement of biocontrol potential of Pseudomonas aeruginosa and Paecilomyces lilacinus against root rot of mungbean by a medicinal plant Launaea nudicaulis L. Pak J Bot 39:2113–2119

    Google Scholar 

  • Meena NK, Tara N, Saharan BS (2018) Review on PGPR: an alternative for chemical fertilizers to promote growth in Aloe vera plants. Int J Curr Microbiol App Sci 7:3546–3551

    Article  CAS  Google Scholar 

  • Misra S, Dixit VK, Khan MH, Kumar Mishra S, Dviwedi G, Yadav S, Singh Chauhan P (2017) Exploitation of agro-climatic environment for selection of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing salt tolerant indigenous plant growth promoting rhizobacteria. Microbiol Res 205:25–34

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    Article  PubMed  Google Scholar 

  • Naik AT (2006) Biological and Molecular characterization of Azotobacter chroococcum isolated from different agroclimatic zones of Karnataka and their influences on growth and biomass of Adhatoda vasica Nees. MSc, (Agri.) thesis, University of Agricultural Sciences, Bangalore, India

    Google Scholar 

  • Narula N, Kothe E, Behl RK (2009) Role of root exudates in plant-microbe interactions. J Appl Bot Food Qual 82:122–130

    CAS  Google Scholar 

  • Nema R, Khare S, Jain P, Pradhan A, Gupta A, Singh D (2013) Natural products potential and scope for modern cancer research. Am J Plant Sci 4:1270–1277

    Article  Google Scholar 

  • Nimnoi P, Lumyong S, Pongsilp N (2011) Impact of rhizobial inoculants on rhizosphere bacterial communities of three medicinal legumes assessed by denaturing gradient gel electrophoresis (DGGE). Ann Microbiol 61:237–245

    Article  CAS  Google Scholar 

  • Ordookhan K, Sharafzadeh S, Zare M (2011) Influence of PGPR on growth, essential oil and nutrients uptake of sweet basil. Adv Environ Biol 5:672–677

    Google Scholar 

  • Panwar J, Tarafdar JC (2006) Distribution of three endangered medicinal plant species and their colonization with arbuscular mycorrhizal fungi. J Arid Environ 65:337–350

    Article  Google Scholar 

  • Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci USA 110:6548–6553

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Sharma M, Kamal S, Rai MK, Rawat AKS, Pushpangdan P, Varma A (2008) Interaction of Piriformospora indica with medicinal plants. In: Varma A (ed) Mycorrhiza. Springer-Verlag, Berlin, pp 655–678

    Chapter  Google Scholar 

  • Prasad A, Kumar S, Khaliq A, Pandey A (2011) Heavy metals and arbuscular mycorrhizal (AM) fungi can alter the yield and chemical composition of volatile oil of sweet basil (Ocimum basilicum L.). Biol Fertil Soils 47:853–861

    Article  CAS  Google Scholar 

  • Prasannakumar SP, Gowtham HG, Hariprasad P, Shivaprasad K, Niranjana SR (2015) Delftia tsuruhatensis WGR–UOM–BT1, a novel rhizobacterium with PGPR properties from Rauwolfia serpentina (L.) Benth. ex Kurz also suppresses fungal phytopathogens by producing a new antibiotic—AMTM. Lett Appl Microbiol 61:460–468

    Article  CAS  PubMed  Google Scholar 

  • Presta L, Bosi E, Fondi M, Maida I, Perrin E, Miceli E, Maggini V, Bogani P, Firenzuoli F, Di Pilato V, Rossolini GM, Mengoni A, Fani R (2016) Phenotypic and genomic characterization of the antimicrobial producer Rheinheimera sp. EpRS3 isolated from the medicinal plant Echinacea purpurea: insights into its biotechnological relevance. Res Microbiol 168:293–305

    Article  CAS  PubMed  Google Scholar 

  • Qi JJ, Yao HY, Ma XJ, Zhou LL, Li XN (2009) Soil microbial community composition and diversity in the rhizosphere of a Chinese medicinal plant. Commun Soil Sci Plant Anal 40:1462–1482

    Article  CAS  Google Scholar 

  • Qi X, Wang E, Xing M, Zhao W, Chen X (2012) Rhizosphere and non-rhizosphere bacterial community composition of the wild medicinal plant Rumex patientia. World J Microbiol Biotechnol 28:2257–2265

    Google Scholar 

  • Qi X, Wang E, Chen X (2012) Molecular characterization of bacterial population in the Rumex patientia rhizosphere soil of Jilin, China. Res J Biotechnol 8:64–71

    Google Scholar 

  • Qin S, Feng WW, Zhang YJ, Wang TT, Xiong YW, Xing K (2018) Diversity of bacterial microbiota of coastal halophyte Limonium sinense and amelioration of salinity stress damage by symbiotic plant growth-promoting Actinobacterium Glutamicibacter halophytocola KLBMP 5180. Appl Environ Microbiol 84:e01533–18

    Google Scholar 

  • Radhika KP, Rodrigues BF (2010) Arbuscular mycorrhizal fungal diversity in some commonly occurring medicinal plants of Western Ghats, Goa region. J For Res 21:45–52

    Article  Google Scholar 

  • Radhika KP, Rodrigues BF (2011) Influence of arbuscular mycorrhizal fungi on andrographolide concentration in Andrographis paniculata. Aust J Med Herbal 23:34–36

    Google Scholar 

  • Raichand R, Kaur I, Singh NK, Mayilraj S (2011) Pontibacterrhizosphera sp. nov., isolated from rhizosphere soil of an Indian medicinal plant Nerium indicum. Antonie Van Leeuwenhoek 100:129–135

    Article  PubMed  Google Scholar 

  • Rajeshkumar S, Nisha MC, Selvaraj T (2008) Variability in growth, nutrition and phytochemical constituents of Plectranthus amboinicus (Lour) Spreng. as influenced by indigenous arbuscular mycorrhizal fungi. Mj Int J Sci Tech 2:431–439

    CAS  Google Scholar 

  • Rosa-Mera CJDA, Ferrera-Cerrato R, Alarc_on A, Sánchez-Colín MDJ, Muñoz-Muñiz OD (2011) Arbuscular mycorrhizal fungi and potassium bicarbonate enhance the foliar content of the vinblastine alkaloid in Catharanthus roseus. Plant Soil 349:367–376

    Article  CAS  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    Article  PubMed  PubMed Central  Google Scholar 

  • Sailo G, Bagyaraj DJ (2005) Influence of different AM-fungi on the growth, nutrition and forskolin content of Coleus forskohlii. Mycol Res 109:795–798

    Article  CAS  PubMed  Google Scholar 

  • Shaikh NM, Mokat ND (2018) Role of rhizosphere fungi associated with commercially explored medicinal and aromatic plants: a review. Curr Agric Res J 6(1):72–77

    Article  Google Scholar 

  • Shang Q, Yang G, Wang Y, Wu X, Zhao X, Hao H, Li Y, Xie Z, Zhang Y, Wang R (2016) Illumina-based analysis of the rhizosphere microbial communities associated with healthy and wilted Lanzhou lily (Lilium davidii var. unicolor) plants grown in the field. World J Microbiol Biotechnol 32:95

    Article  CAS  PubMed  Google Scholar 

  • Sharma D, Kapoor R, Bhatnagar AK (2008) Arbuscular mycorrhizal (AM) technology for the conservation of Curculigo orchioides Gaertn.: an endangered medicinal herb. World J Microbiol Biotechnol 24:395–400

    Article  Google Scholar 

  • Shi JY, Yuan XF, Lin HR, Yang YQ, Li ZY (2011) Differences in soil properties and bacterial communities between the rhizosphere and bulk soil and among different production areas of the medicinal plant Fritillaria thunbergii. Int J Mol Sci 12:3770–3785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi ZY, Chen YL, Hou XG, Gao SC, Wang F (2013) Arbuscular mycorrhizal fungi associated with tree peony in 3 geographic locations in China. Turk J Agric For 37:726–733

    Article  Google Scholar 

  • Shrivastava S, Prasad R, Varma A (2014) Anatomy of root from eyes of a microbiologist. In: Morte A, Varma A (eds) Root engineering, vol 40. Springer-Verlag, Berlin, pp 3–22

    Chapter  Google Scholar 

  • Simonetti E, Roberts IN, Montecchia MS, Gutierrez-Boem FH, Gomez FM, Ruiz JA (2018) A novel Burkholderia ambifaria strain able to degrade the mycotoxin fusaric acid and to inhibit Fusarium spp. growth. Microbiol Res 206:50–59

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Soni SK, Kalra A (2013) Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza 23:35–44

    Article  PubMed  Google Scholar 

  • Singh M, Awasthi A, Soni SK, Singh R, Verma RK, Kalra A (2015) Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth. Sci Rep 5:15500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solanki AS, Kumar V, Sharma S (2011) AM fungi and Azotobacter chroococcum affecting yield, nutrient uptake and cost efficacy of Chlorophytum borivilianum in Indian Arid Region. J Agric Technol 7:983–991

    Google Scholar 

  • Song X, Pan Y, Li L, Wu X, Wang Y (2018) Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. Continuous cropping fields. PLoS One 13:e0193811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza R, Ambrosini A, Passaglia LM (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun XG, Tang M (2013) Effect of arbuscular mycorrhizal fungi inoculation on root traits and root volatile organic compound emissions of Sorghum bicolor. S Afr J Bot 88:373–379

    Article  CAS  Google Scholar 

  • Sundar SK, Palavesam A, Parthipan B (2011) AM fungal diversity in selected medicinal plants of Kanyakumari District, Tamil Nadu, India. Ind J Microbiol 5:259–265

    Article  Google Scholar 

  • Tamilarasi S, Nanthakumar K, Karthikeyan K, Lakshmanaperumalsamy P (2008) Diversity of root associated microorganisms of selected medicinal plants and influence of rhizomicroorganisms on the antimicrobial property of Coriandrum sativum. J Environ Biol 29:127–134

    CAS  PubMed  Google Scholar 

  • Tang M, Xue S, Yang HP (2004) Vesicular arbuscular mycorrhizal (VAM) fungi of xerophyte in Gansu. J Yunnan AgricUniv 19:638–642

    Google Scholar 

  • Teixeira da Silva JA, Egamberdieva D (2013) Plant-growth promoting rhizobacteria and medicinal plants. Recent progress in medicinal plants 38:26–42

    Google Scholar 

  • Thombre SS, Kalamkar SS, Shaikh MN, Torawane SD, Mokat DN (2016) Studies on rhizosphere fungi and allelopathic potential of Santalum album L. Biosci Discov 7:158–161

    Google Scholar 

  • Tian XY, Zhang CS (2017) Illumina-based analysis of endophytic and rhizosphere bacterial diversity of the coastal halophyte Messerschmidia sibirica. Front Microbiol 8:2288

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117

    Article  CAS  PubMed  Google Scholar 

  • Toussaint JP, Smith A, Smith E (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17:291–297

    Article  CAS  Google Scholar 

  • Vacheron J, Renoud S, Muller D, Babalola OO, Prigent-Combaret C (2015) Alleviation of abiotic and biotic stresses in plants by Azospirillum. In: Handbook for Azospirillum. Springer, Berlin, pp 333–365

    Google Scholar 

  • Wahid OAA, Mehana TA (2000) Impact of phosphate-solubilizing fungi on the yield and phosphorus-uptake by wheat and faba bean plants. Microbiol Res 155:221–227

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Tang M, Niu ZC, Zhang HQ (2008) Relationship between AM fungi resources of rare medicinal plants and soil factors in Lishan Mountain. Acta Bot Bor-Occi Sin 28:355–361

    Google Scholar 

  • Wang Y, Wang M, Li Y, Wu A, Huang J (2018) Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS One 13:e0196408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei LH, Shao Y, Wan JW, Feng H, Zhu H, Huang HW, Zhou YJ (2014) Isolation and characterization of a rhizobacterial antagonist of root-knot nematodes. PLoS One 9:e85988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whang KS, Lee JC, Lee HR, Han SI, Chung SH (2014) Terriglobus tenax sp. nov., an exopolysaccharide-producing Acidobacterium isolated from rhizosphere soil of a medicinal plant. Int J Syst Evol Microbiol 64:431–437

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Xu QY, Zheng ZH, Huang YJ (2012) Kribbella amoyensis sp.nov., isolated from rhizosphere soil of a pharmaceutical plant, Typhonium giganteum. Engl Int J Syst Evol Microbiol 62:1081–1085

    Article  CAS  PubMed  Google Scholar 

  • Yang AN, Lu L, Wu CX, Xia MM (2011) Arbuscular mycorrhizal fungi associated with Huangshan Magnolia (Magnolia cylindrica). J Med Plant Res 5:4542–4548

    Google Scholar 

  • Yang L, Chen ML, Shao AJ, Yang G (2012) Discussion on applications and mechanisms of biocontrol microoganisms used for controlling medicinal plant soil-borne diseases. China J Chin Mater Med 37:3188–3192

    Google Scholar 

  • Zhang SS, Jin YL, Zhu WJ, Tang JJ, Hu SJ, Zhou TS, Chen X (2010) Baicalin released from Scutellaria baicalensis induces autotoxicity and promotes soil borne pathogens. J Chem Ecol 36:329–338

    Article  CAS  PubMed  Google Scholar 

  • Zhang YQ, Chen J, Liu HY, Zhang YQ, Li WJ, Yu LY (2011a) Geodermatophilus ruber sp. nov., isolated from rhizosphere soil of a medicinal plant. Int J Syst Evol Microbiol 61:190–193

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZY, Lin WX, Yang YH, Chen H, Chen XJ (2011b) Effects of consecutively monocultured Rehmannia glutinosa L. on diversity of fungal community in rhizospheric soil. Agric Sci China 10:1374–1384

    Article  Google Scholar 

  • Zhang HY, Xue QH, Shen GH, Wang DS (2013) Effects of actinomycetes agent on ginseng growth and rhizosphere soil microflora. J Appl Ecol 24:2287–2293

    CAS  Google Scholar 

  • Zhang TY, Yu Y, Zhu H, Yang SZ, Yang TM, Zhang MY, Zhang YX (2018) Absidia panacisoli sp. nov., isolated from rhizosphere of Panax notoginseng. Int J Syst Evol Microbiol 68:2468–2472

    Article  PubMed  Google Scholar 

  • Zhao Z, Zhang X, Tan Z, Guo J, Zhu H (2013) Isolation and identification of cultivable myxobacteria in the rhizosphere soils of medicinal plants. Acta Microb Sin 53:657–668

    Google Scholar 

  • Zubek S, Blaszkowski J (2009) Medicinal plants as hosts of arbuscular mycorrhizal fungi and dark septate endophytes. Phytochem Rev 8:571–580

    Article  CAS  Google Scholar 

  • Zubek S, Blaszkowski J, Mleczko P (2011) Arbuscular mycorrhizal and dark septate endophyte associations of medicinal plants. Acta Soc Bot Pol 80:285–292

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kushwaha, R.K., Rodrigues, V., Kumar, V., Patel, H., Raina, M., Kumar, D. (2020). Soil Microbes-Medicinal Plants Interactions: Ecological Diversity and Future Prospect. In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Microbe Symbiosis. Springer, Cham. https://doi.org/10.1007/978-3-030-36248-5_14

Download citation

Publish with us

Policies and ethics