Skip to main content

Revisit Lmser from a Deep Learning Perspective

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering. Big Data and Machine Learning (IScIDE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11936))

Abstract

Proposed in 1991, Least Mean Square Error Reconstruction for self-organizing network, shortly Lmser, was a further development of the traditional auto-encoder (AE) by folding the architecture with respect to the central coding layer and thus leading to the features of Duality in Connection Weight (DCW) and Duality in Paired Neurons (DPN), as well as jointly supervised and unsupervised learning which is called Duality in Supervision Paradigm (DSP). However, its advantages were only demonstrated in a one-hidden-layer implementation due to the lack of computing resources and big data at that time. In this paper, we revisit Lmser from the perspective of deep learning, develop Lmser network based on multiple fully-connected layers, and confirm several Lmser functions with experiments on image recognition, reconstruction, association recall, and so on. Experiments demonstrate that Lmser indeed works as indicated in the original paper, and it has promising performance in various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ballard, D.H.: Modular learning in neural networks. In: Proceedings of the Sixth National Conference on Artificial Intelligence, AAAI 1987, vol. 1, pp. 279–284 (1987)

    Google Scholar 

  2. Bourlard, H., Kamp, Y.: Auto-association by multilayer perceptrons and singular value decomposition. Biol. Cybern. 59(4–5), 291–294 (1988)

    Article  MathSciNet  Google Scholar 

  3. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: International Conference on Learning Representations (2015). http://arxiv.org/abs/1412.6572

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  5. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  6. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  7. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. CoRR abs/1608.06993 (2016). http://arxiv.org/abs/1608.06993

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980

  9. LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database, vol. 2. AT&T Labs (2010). http://yann.lecun.com/exdb/mnist/

  10. Mao, X., Shen, C., Yang, Y.B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: Advances in Neural Information Processing Systems, pp. 2802–2810 (2016)

    Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  12. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. CoRR abs/1708.07747 (2017)

    Google Scholar 

  13. Xu, L.: Least MSE reconstruction for self-organization: (i)&(ii). In: Proceedings of 1991 International Joint Conference on Neural Networks, pp. 2363–2373 (1991)

    Google Scholar 

  14. Xu, L.: Least mean square error reconstruction principle for self-organizing neural-nets. Neural Netw. 6(5), 627–648 (1993)

    Article  Google Scholar 

  15. Xu, L.: An overview and perspectives on bidirectional intelligence: Lmser duality, double IA harmony, and causal computation. IEEE/CAA J. Autom. Sin. 6(4), 865–893 (2019). https://doi.org/10.1109/JAS.2019.1911603

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work was supported by the Zhi-Yuan Chair Professorship Start-up Grant (WF220103010), and Startup Fund (WF220403029) for Youngman Research, from Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shikui Tu or Lei Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, W., Tu, S., Xu, L. (2019). Revisit Lmser from a Deep Learning Perspective. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds) Intelligence Science and Big Data Engineering. Big Data and Machine Learning. IScIDE 2019. Lecture Notes in Computer Science(), vol 11936. Springer, Cham. https://doi.org/10.1007/978-3-030-36204-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36204-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36203-4

  • Online ISBN: 978-3-030-36204-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics