Skip to main content

A Heating Systems Application of Feedback Linearization for MTI Systems in a Tensor Framework

  • Conference paper
  • First Online:
Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2018)

Abstract

Input-affine nonlinear systems are known to be feedback linearizable, i.e. the closed loop shows a predefined linear behaviour. The nonlinear control law can be computed symbolically by Lie derivatives calculus with the help of a state space model of the plant. In applications, this can lead to problems, because the complexity of the controller is not predefined by the order of the system, but depends on the structure of the nonlinear terms of the model. It was shown that this is not true for the multilinear subclass of input-affine nonlinear systems, where only the order of the model determines the complexity of the controller. Moreover, models and controllers can be represented as parameter tensors, which makes modern tensor decomposition methods also applicable. The paper shows how this tensor framework of Multilinear Time-Invariant (MTI) Systems can be used for the design of a feedback linearizing controller for a heating system.

This work was partly sponsored by the project OBSERVE of the Federal Ministry of Economic Affairs and Energy, Germany (Grant No.: 03ET1225B).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The notation \(\mathbb {R}^{\times ^{(n+m)} 2}\) denotes the space \(\mathbb {R}^{\overbrace{ ^{2 \times \ldots \times 2} }^{n+m \text { times}}}\).

References

  1. Bader, B.W., Kolda, T.G., et al.: Matlab tensor toolbox version 2.6, February 2015. http://www.sandia.gov/~tgkolda/TensorToolbox/

  2. Cichocki, A., Zdunek, R., Phan, A., Amari, S.: Nonnegative Matrix and Tensor Factorizations. Wiley, Chichester (2009)

    Book  Google Scholar 

  3. Cichocki, A., Mandic, D.P., Phan, A.H., Caiafa, C.F., Zhou, G., Zhao, Q., Lathauwer, L.D.: Tensor decompositions for signal processing applications from two-way to multiway component analysis. abs/1403.4462 (2014). http://arxiv.org/abs/1403.4462

  4. Dorf, R.C., Bishop, R.H.: Modern Control Systems, 12th edn. Pearson Prentice Hall, Upper Saddle River (2011)

    MATH  Google Scholar 

  5. Ekman, M.: Modeling and control of bilinear systems: application to the activated sludge process. Ph.D. thesis, Uppsala University (2005)

    Google Scholar 

  6. Grasedyk, L., Kressner, L., Tobler, C.: A literature survey of low-rank tensor approximation techniques. GAMM-Mitteilungen 36, 53–78 (2013)

    Article  MathSciNet  Google Scholar 

  7. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer Series in Computational Mathematics, vol. 42. Springer, Heidelberg (2012)

    Book  Google Scholar 

  8. Henson, M.A., Seborg, D.E. (eds.): Nonlinear Process Control. Prentice-Hall, Inc., Upper Saddle River (1997)

    Google Scholar 

  9. Hoffmann, C.: Linear parameter-varying control of systems of high complexity. Ph.D. thesis, Technische Universität Hamburg (2016)

    Google Scholar 

  10. Isidori, A.: Nonlinear Control Systems, 3rd edn. Springer, New York (1995)

    Book  Google Scholar 

  11. Kang, C.S., Park, J.I., Park, M., Baek, J.: Novel modeling and control strategies for a HVAC system including carbon dioxide control. Energies 7, 3599–3617 (2014)

    Article  Google Scholar 

  12. Khalil, K.H.: Nonlinear Systems. Prentice-Hall, Inc., Upper Saddle River (1996)

    Google Scholar 

  13. Kolda, T., Bader, B.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  14. Kruppa, K., Lichtenberg, G.: Comparison of CP tensors, tucker tensors and tensor trains for representation of right hand sides of ordinary differential equations. In: Workshop on Tensor Decomposition and Applications, Leuven (2016)

    Google Scholar 

  15. Kruppa, K., Lichtenberg, G.: Feedback linearization of multilinear time-invariant systems using tensor decomposition methods. In: 8th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (2018)

    Google Scholar 

  16. Kruppa, K., Pangalos, G., Lichtenberg, G.: Multilinear approximation of nonlinear state space models. In: 19th IFAC World Congress, Cape Town, pp. 9474–9479. IFAC (2014)

    Google Scholar 

  17. Kruppa, K.: Comparison of tensor decomposition methods for simulation of multilinear time-invariant systems with the mti toolbox. IFAC-PapersOnLine 50(1), 5610–5615 (2017). 20th IFAC World Congress

    Article  Google Scholar 

  18. Lewis, F., Vrabie, D., Syrmos, V.: Optimal Control, 3rd edn. Wiley, Hoboken (2012)

    Book  Google Scholar 

  19. Lichtenberg, G.: Tensor representation of Boolean functions and Zhegalkin polynomials. In: International Workshop on Tensor Decompositions, Bari (2010)

    Google Scholar 

  20. Maciejowski, J.: Predictive Control with Constraints. Pearson Education Limited, London (2002)

    MATH  Google Scholar 

  21. Müller, T., Kruppa, K., Lichtenberg, G., Réhault, N.: Fault detection with qualitative models reduced by tensor decomposition methods. IFAC-PapersOnLine 48(21), 416–421 (2015). 9th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes, SAFEPROCESS

    Article  Google Scholar 

  22. Pangalos, G.: Model-based controller design methods for heating systems. Dissertation, TU Hamburg, Hamburg (2016). https://doi.org/10.15480/882.1324

  23. Pangalos, G., Eichler, A., Lichtenberg, G.: Hybrid multilinear modeling and applications, pp. 71–85. Springer, Cham (2015)

    Google Scholar 

  24. Pop, C.I., Dulf, E.H.: Robust feedback linearization control for reference tracking and disturbance rejection in nonlinear systems. In: Recent Advances in Robust Control - Novel Approaches and Design Methods, InTech (2011)

    Google Scholar 

  25. Rehrl, J., Horn, M.: Temperature control for HVAC systems based on exact linearization and model predictive control. In: IEEE International Conference on Control Applications (CCA), pp. 1119–1124 (2011)

    Google Scholar 

  26. Sastry, S.: Nonlinear Systems: Analysis, Stability, and Control. Interdisciplinary Applied Mathematics. Springer, New York (1999)

    Book  Google Scholar 

  27. Semsar-Kazerooni, E., Yazdanpanah, M.J., Lucas, C.: Nonlinear control and disturbance decoupling of HVAC systems using feedback linearization and backstepping with load estimation. IEEE Trans. Control. Syst. Technol. 16(5), 918–929 (2008)

    Article  Google Scholar 

  28. Thosar, A., Patra, A., Bhattacharyya, S.: Feedback linearization based control of a variable air volume air conditioning system for cooling applications. ISA Trans. 47(3), 339–349 (2008)

    Article  Google Scholar 

  29. Vervliet, N., Debals, O., Sorber, L., Van Barel, M., De Lathauwer, L.: Tensorlab 3.0, March 2016. http://www.tensorlab.net

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Kruppa .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof (Lie Bracket)

The Lie bracket of two vector functions is defined by (48). With Theorem 1 the Lie derivatives of a vector function \(\mathbf g (\mathbf{{x}})\) along a vector field \(\mathbf h (\mathbf{{x}})\) and vice versa are written as

$$\begin{aligned} L_\mathbf{h }{} \mathbf g (\mathbf{{x}})&= \sum \limits _{i=1}^{n} h_i(\mathbf{{x}})\frac{\partial }{\partial x_i} \mathbf g (\mathbf{{x}}) = \left\langle \,\mathsf{{L}}_{\mathsf{{H}},\mathsf{{G}},1}\,\left| \,\mathsf{{M}}_p^{2N}\left( \mathbf{{x}}\right) \,\right. \right\rangle _{},\\ L_\mathbf{g }{} \mathbf h (\mathbf{{x}})&= \sum \limits _{i=1}^{n} g_i(\mathbf{{x}})\frac{\partial }{\partial x_i} \mathbf h (\mathbf{{x}}) = \left\langle \,\mathsf{{L}}_{\mathsf{{G}},\mathsf{{H}},1}\,\left| \,\mathsf{{M}}_p^{2N}\left( \mathbf{{x}}\right) \,\right. \right\rangle _{}. \end{aligned}$$

Inserting this to (48) and rearranging results in

$$\begin{aligned} \left[ \mathbf h ,\mathbf g \right]&= \left\langle \,\mathsf{{L}}_{\mathsf{{H}},\mathsf{{G}},1}\,\left| \,\mathsf{{M}}_p^{2N}\left( \mathbf{{x}}\right) \,\right. \right\rangle _{} - \left\langle \,\mathsf{{L}}_{\mathsf{{G}},\mathsf{{H}},1}\,\left| \,\mathsf{{M}}_p^{2N}\left( \mathbf{{x}}\right) \,\right. \right\rangle _{}= \left\langle \,\mathsf{{L}}_{\mathsf{{H}},\mathsf{{G}},1} - \mathsf{{L}}_{\mathsf{{G}},\mathsf{{H}},1}\,\left| \,\mathsf{{M}}_p^{2N}\left( \mathbf{{x}}\right) \,\right. \right\rangle _{}. \end{aligned}$$

   \(\square \)

Proof (Feedback Linearizability)

The conditions for an affine SISO system to be feedback linearizable with relative degree of n are given for nonlinear systems in [10]. The matrix

$$\begin{aligned} \begin{pmatrix}\mathbf {b}&ad_{\mathbf {a}} \mathbf {b}(\mathbf {x_0})&\cdots&ad_{\mathbf {a}}^{n-1} \mathbf {b}(\mathbf {x_0})\end{pmatrix} \end{aligned}$$

must have rank n and can be expressed in the case of an MTI model given in tensor form by \(\left\langle \,\mathsf{{T}}\,\left| \,\mathsf{{M}}_p^{n}\left( \mathbf{{x}}_0\right) \,\right. \right\rangle _{}\). Each repeated Lie bracket \(\left\langle \,\mathsf{{L}}_{ad_\mathbf{a }{} \mathbf b }^{k-1}\,\left| \,\mathsf{{M}}_p^{n}\left( \mathbf{{x}}\right) \,\right. \right\rangle _{}\) is described with respect to the monomial tensor of order n and concatenated resulting in

$$\begin{aligned} \mathsf{{T}}(:,\ldots ,:,k) = \mathsf{{L}}_{ad_\mathbf{a }{} \mathbf b }^{k-1},\ k = 1,\ldots ,n. \end{aligned}$$

The evaluation of \(\mathsf{{T}}\) with the monomial tensor of order n gives the matrix of the Lie brackets

$$\begin{aligned} \left\langle \,\mathsf{{T}}\,\left| \,\mathsf{{M}}_p^{n}\left( \mathbf{{x}}_0\right) \,\right. \right\rangle _{} = \begin{pmatrix} \mathbf {b}&ad_{\mathbf {a}} \mathbf {b}(\mathbf {x_0})&\cdots&ad_{\mathbf {a}}^{n-1} \mathbf {b}(\mathbf {x_0})\end{pmatrix}. \end{aligned}$$

The matrix should have rank n, which can be easily checked, by evaluation of the contracted product at \(\mathbf{{x}}_0\). The second condition is the tensor formulation of the condition that the distribution \(\mathrm {span}\left\{ \mathbf b ,ad_\mathbf{a } \mathbf b , \ldots , ad_\mathbf{a }^{n-2} \mathbf b )\right\} \) is involutive at \(\mathbf{{x}}_0\). The distribution is involutive if and only if

$$\begin{aligned} \mathrm {rank}\left( \begin{pmatrix}\mathbf {b}(\mathbf {x}_0)&\cdots&ad_{\mathbf {a}}^{n-2} \mathbf {b}(\mathbf {x_0})&\left[ ad_{\mathbf {a}}^{i} \mathbf {b}(\mathbf {x_0}),ad_{\mathbf {a}}^{j} \mathbf {b}(\mathbf {x_0})\right] \end{pmatrix}\right) = \mathrm {rank}\left( \begin{pmatrix}\mathbf {b}(\mathbf {x}_0)&\cdots&ad_{\mathbf {a}}^{n-2} \mathbf {b}(\mathbf {x_0})\end{pmatrix}\right) \end{aligned}$$

is fulfilled for all i and \(j = 0,\ldots ,n-2\). Describing the two matrices in terms of parameter tensors, like it was done for the rank condition before, leads to the second condition.\(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kruppa, K., Lichtenberg, G. (2020). A Heating Systems Application of Feedback Linearization for MTI Systems in a Tensor Framework. In: Obaidat, M., Ören, T., Rango, F. (eds) Simulation and Modeling Methodologies, Technologies and Applications. SIMULTECH 2018. Advances in Intelligent Systems and Computing, vol 947. Springer, Cham. https://doi.org/10.1007/978-3-030-35944-7_7

Download citation

Publish with us

Policies and ethics