Skip to main content

Atomistic Modelling and Simulation of Transmission Electron Microscopy Images: Application to Intrinsic Defects of Graphene

  • Conference paper
  • First Online:
Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2018)

Abstract

The characterization of advanced materials and devices in the nanometer range requires complex tools to understand the precise links between structure and properties. This paper demonstrates that the modelling of graphene-based defects can be obtained efficiently for various atomic arrangements using the Brenner module of the SAMSON software platform. The signatures of all kinds of defects are computed in terms of energy and simulated scanning transmission electron microscopy images. The results are in good agreement with the majority of the available theoretical and experimental data. This original methodology is an excellent compromise between the speed and the precision required by the semiconductor industry and opens the possibility of realistic in-silico research conjugated to the experimental nanocharacterization of these promising materials. We propose a novel approach to compare the agreement between experiment and simulation by using the projected radial distribution function. The maximum projected Euclidian distance between the model and the experiment is always better than 100 pm.

Grenoble INP—Institute of Engineering Univ. Grenoble Alpes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science 306, 5696 (2004)

    Article  Google Scholar 

  2. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  3. Lee, C., et al.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)

    Article  Google Scholar 

  4. Chen, H., et al.: Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 20(18), 3557–3561 (2008)

    Article  Google Scholar 

  5. Pei, Q.X., et al.: A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon 48(3), 898–904 (2010)

    Article  Google Scholar 

  6. Scarpa, F., et al.: Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 20(6), 1–11 (2009)

    Article  Google Scholar 

  7. Park, S., et al.: The effect of concentration of graphene nanoplatelets on mechanical and electrical properties of reduced graphene oxide papers. Carbon 50(12), 4573–4578 (2012)

    Article  Google Scholar 

  8. Lee, E., et al.: Electrical properties and photoconductivity of stacked-graphene carbon nanotubes. Adv. Mater. 22(16), 1854–1857 (2010)

    Article  Google Scholar 

  9. Allen, B.L., et al.: Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 19(11), 1439–1451 (2007)

    Article  Google Scholar 

  10. Sorkin, V., Zhang, Y.W.: Graphene-based pressure nano-sensors. J. Mol. Model. 17(11), 2825–2830 (2011)

    Article  Google Scholar 

  11. Qureshi, A., et al.: Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications. Diam. Relat. Mater. 18(12), 1401–1420 (2009)

    Article  Google Scholar 

  12. Joh, H.-I., et al.: Synthesis and properties of an atomically thin carbon nanosheet similar to graphene and its promising use as an organic thin film transistor. Carbon 55, 299–304 (2013)

    Article  Google Scholar 

  13. Yao, J., et al.: In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem. Commun. 11(10), 1849–1852 (2009)

    Article  Google Scholar 

  14. Stankovich, S., et al.: Graphene-based composite materials. Nature 442(7100), 282–286 (2006)

    Article  Google Scholar 

  15. Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990)

    Article  Google Scholar 

  16. Brenner, D.W.: The art and science of an analytic potential. Phys. Stat. Sol. (b) 217, 23–40 (2000)

    Article  Google Scholar 

  17. Brenner, D.W., et al.: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Mater. 14, 783–802 (2002)

    Article  Google Scholar 

  18. Dyson, A.J., Smith, P.V.: Extension of the Brenner empirical interatomic potential to C-Si-H systems. Surf. Sci. 355, 140–150 (1996)

    Article  Google Scholar 

  19. Los, J.H., Fasolino, A.: Intrinsic long-range bond-order potential for carbon: performance in Monte Carlo simulations of graphitization. Phys. Rev. B 68, 024107 (2003)

    Article  Google Scholar 

  20. Stuart, S.J., et al.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472 (2000)

    Article  Google Scholar 

  21. Brenner, D.W., et al.: Simulated engineering of nanostructures. In: Fourth Foresight Conference on Molecular Nanotechnology (1996)

    Article  Google Scholar 

  22. Sinnott, S.B., et al.: Model of carbon nanotube growth through chemical vapor deposition. Chem. Phys. Lett. 315, 25–30 (1999)

    Article  Google Scholar 

  23. Brenner, D.W., et al.: Molecular dynamics simulations of the nanometer-scale mechanical properties of compressed Buckminsterfullerene. Thin Solid Films 206, 220–223 (1991)

    Article  Google Scholar 

  24. Lehtinen, O., et al.: Effect of ion bombardment on a two-dimensional target: atomistic simulations of graphene irradiation. Phys. Rev. B 81(15), 153401 (2010)

    Article  Google Scholar 

  25. Bosson, et al.: Interactive physically-based structural modeling of hydrocarbon systems. J. Comput. Phys. 231(6), 2581–2598 (2012)

    Article  MATH  Google Scholar 

  26. Los, J.H., Fasolino, A.: Monte Carlo simulations of carbon-based structures based on an extended Brenner potential. Comput. Phys. Commun. 147, 178–181 (2002)

    Article  MATH  Google Scholar 

  27. Redon, S., et al.: Adaptive dynamics of articulated bodies. ACM Trans. Graph. (TOG) 24(3), 936–945 (2005)

    Article  Google Scholar 

  28. Koch, C.: Determination of core structure periodicity and point defect density along dislocations. Ph.D. thesis, Arizona State University (2002)

    Google Scholar 

  29. Crewe, A.V., Wall, J., Langmore, J.: Science 168, 1338 (1970)

    Article  Google Scholar 

  30. Egerton, R.: Mechanisms of radiation damage in beam-sensitive specimens, for TEM accelerating voltages between 10 and 300 kV. Microsc. Res. Tech. 75(11), 1550–1556 (2012)

    Article  Google Scholar 

  31. Biskupek, J., et al.: Effects of residual aberrations explored on single-walled carbon nanotubes. Ultramicroscopy 116, 1–7 (2012)

    Article  Google Scholar 

  32. Barthel, J., Thust, A.: On the optical stability of high-resolution transmission electron microscopes. Ultramicroscopy 134, 6–17 (2013)

    Article  Google Scholar 

  33. Schramm, S., et al.: Intrinsic instability of aberration- corrected electron microscopes. Phys. Rev. Lett. 109(16), 163901 (2012)

    Article  Google Scholar 

  34. Uhlemann, S., et al.: Thermal magnetic field noise limits resolution in transmission electron microscopy. Phys. Rev. Lett. 111, 046101 (2013)

    Article  Google Scholar 

  35. Lee, Z., et al.: Electron dose dependence of signal-to-noise ratio, atom contrast and resolution in transmission electron microscope images. Ultramicroscopy 145, 3–12 (2014)

    Article  Google Scholar 

  36. LeBeau, J.M., et al.: Phys. Rev. Lett. 100, 206101 (2008)

    Article  Google Scholar 

  37. LeBeau, J.M., et al.: Phys. Rev. B 79, 214110 (2009)

    Article  Google Scholar 

  38. Hytch, M.J., et al.: Ultramicroscopy 53, 191 (1994)

    Article  Google Scholar 

  39. Howie, A.: Ultramicroscopy 98, 73 (2004)

    Article  Google Scholar 

  40. Mkhoyan, K.A., et al.: Phys. Rev. Lett. 100, 025503 (2008)

    Article  Google Scholar 

  41. Boothroyd, C.B.: J. Microsc. 190, 99 (1998)

    Article  Google Scholar 

  42. Du, K., et al.: Ultramicroscopy 107, 281 (2007)

    Article  Google Scholar 

  43. Meyer, R.R., et al.: Microsc. Res. Tech. 49, 269 (2000)

    Article  Google Scholar 

  44. Thust, A.: Phys. Rev. Lett. 102, 220801 (2009)

    Article  Google Scholar 

  45. Fasolino, A., et al.: Intrinsic ripples in graphene. Nat. Mater. 6, 858–861 (2007)

    Article  Google Scholar 

  46. Banhart, F., et al.: Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62, 1181 (1999)

    Article  Google Scholar 

  47. Smith, B.W., et al.: Electron irradiation effects in single wall carbon nanotubes. J. Appl. Phys. 90, 3509 (2001)

    Article  Google Scholar 

  48. Schindelin, et al.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7), 676 (2012)

    Article  Google Scholar 

  49. Stone, A.J., et al.: Theoretical Studies of Icosahedral C60 and some related species. Chem. Phys. Lett. 128, 501–503 (1986)

    Article  Google Scholar 

  50. Pauling, L.: The Nature of the Chemical Bond. Cornell University Press, Ithaca (1960)

    MATH  Google Scholar 

  51. Meyer, J.C., et al.: Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8(11), 3582–3586 (2008)

    Article  Google Scholar 

  52. Kotakoski, J., et al.: From point defects in graphene to two-dimensional amorphous carbon. Phys. Rev. Lett. 106, 105505 (2011)

    Article  Google Scholar 

  53. Kotakoski, J., et al.: Stone-Wales-type transformations in carbon nanostructures driven by electron irradiation. Phys. Rev. B 83, 245420 (2011)

    Article  Google Scholar 

  54. Li, L., et al.: Defect energies of graphite: density-functional calculations. Phys. Rev. B 72, 184109 (2005)

    Article  Google Scholar 

  55. Ma, J., et al.: Stone-Wales defects in graphene and other planar sp2-bonded materials. Phys. Rev. B 80, 033407 (2009)

    Article  Google Scholar 

  56. Jensen, P., et al.: Catalysis of nanotube plasticity under tensile strain. Phys. Rev. B 66, 193403 (2002)

    Article  Google Scholar 

  57. Zhang, W., et al.: Tight-binding calculation studies of vacancy and adatom defects in graphene. J. Phys. Condens. Matter 28, 115001 (2016)

    Article  Google Scholar 

  58. Trevethan, T., et al.: Vacancy diffusion and coalescence in graphene directed by defect strain fields. Nanoscale 6, 2978–2986 (2014)

    Article  Google Scholar 

  59. Skowron, S., et al.: Energetics of atomic scale structure changes in graphene. Chem. Soc. Rev. 44, 3143 (2015)

    Article  Google Scholar 

  60. Gass, M.H., et al.: Free-Standing graphene at atomic resolution. Nat. Nanotechnol. 3, 676–681 (2008)

    Article  Google Scholar 

  61. Girit, Ç.Ö., et al.: Graphene at the edge: stability and dynamics. Science 27 323(5922), 1705–1708 (2009)

    Article  Google Scholar 

  62. El-Barbary, A.A., et al.: Structure and energetics of the vacancy in graphite. Phys. Rev. B 68, 144107 (2003)

    Article  Google Scholar 

  63. Robertson, A.W., Warner, J.H.: Atomic resolution imaging of graphene by transmission electron microscopy. Nanoscale 5, 4079–4093 (2013)

    Article  Google Scholar 

  64. Salve (2018). http://www.salve-project.de/home.html

  65. Lehtinen, O., et al.: Atomic scale study of the life cycle of a dislocation in graphene from birth to annihilation. Nat. Commun. 4, 3098 (2013)

    Article  Google Scholar 

  66. Ramasse, Q.M., et al.: Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy. Nano Lett. 13, 4989–4995 (2013)

    Article  Google Scholar 

  67. Warner, J.H., et al.: Dislocation-driven deformations in graphene. Science 337, 209 (2012)

    Article  Google Scholar 

  68. Saito, M., et al.: Magic numbers of graphene multivacancies. Jpn. J. Appl. Phys. 46(12L), L1185 (2007)

    Article  Google Scholar 

  69. Xu, C.H., et al.: Simulations of point-defect properties in graphite by a tight-binding-force model. Phys. Rev. B. 48(18), 13273 (1993)

    Article  Google Scholar 

  70. Dettori, R., et al.: Elastic fields and moduli in defected graphene. J. Phys. Condens. Matter 24, 104020 (2012)

    Article  Google Scholar 

  71. Robertson, A.W., et al.: Spatial control of defect creation in graphene at the nanoscale. Nat. Commun. 3, 1144–1151 (2012)

    Article  Google Scholar 

  72. Wu, L., et al.: First-principles study on migration and coalescence of point defects in monolayer graphene. J. Phys. Chem. C 117, 17066–17072 (2013)

    Article  Google Scholar 

  73. Song, B., et al.: Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures. Nano Lett. 11, 2247–2250 (2011)

    Article  Google Scholar 

  74. Tsetserisa, L., Pantelides, S.T.: Adatom complexes and self-healing mechanisms on graphene and single-wall carbon nanotubes. Carbon 47, 901–908 (2009)

    Article  Google Scholar 

  75. Hashimoto, A., et al.: Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004). https://doi.org/10.1038/nature02817

    Article  Google Scholar 

  76. Bangert, U., et al.: Nanotopography of graphene. Phys. Status Solidi A 206, 2115–2119 (2009)

    Article  Google Scholar 

  77. Lee, Y.H., et al.: Catalytic growth of single-wall carbon nanotubes: an ab initio study. Phys. Rev. Lett. 78, 2393–2396 (1997)

    Article  Google Scholar 

  78. Lehtinen, O., et al.: Magnetic properties and diffusion of adatoms on a graphene sheet. Phys. Rev. Lett. 91, 017202 (2003)

    Article  Google Scholar 

  79. Crespi, V.H., et al.: Prediction of a pure-carbon planar covalent metal. Phys. Rev. B 53, R13303(R) (1996)

    Article  Google Scholar 

Download references

Acknowledgements

The invaluable contribution from the platform of nanocharacterization (PFNC) at MINATEC, Grenoble, France is respectfully acknowledged (https://www.minatec.org/en/). We would like to gratefully acknowledge funding from the European Research Council through the ERC Starting Grant No. 307629.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Guedj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guedj, C., Jaillet, L., Rousse, F., Redon, S. (2020). Atomistic Modelling and Simulation of Transmission Electron Microscopy Images: Application to Intrinsic Defects of Graphene. In: Obaidat, M., Ören, T., Rango, F. (eds) Simulation and Modeling Methodologies, Technologies and Applications. SIMULTECH 2018. Advances in Intelligent Systems and Computing, vol 947. Springer, Cham. https://doi.org/10.1007/978-3-030-35944-7_1

Download citation

Publish with us

Policies and ethics