Skip to main content

Learning Deformable Point Set Registration with Regularized Dynamic Graph CNNs for Large Lung Motion in COPD Patients

  • Conference paper
  • First Online:
Graph Learning in Medical Imaging (GLMI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11849))

Included in the following conference series:

Abstract

Deformable registration continues to be one of the key challenges in medical image analysis. While iconic registration methods have started to benefit from the recent advances in medical deep learning, the same does not yet apply for the registration of point sets, e.g. registration based on surfaces, keypoints or landmarks. This is mainly due to the restriction of the convolution operator in modern CNNs to densely gridded input. However, with the newly developed methods from the field of geometric deep learning suitable tools are now emerging, which enable powerful analysis of medical data on irregular domains. In this work, we present a new method that enables the learning of regularized feature descriptors with dynamic graph CNNs. By incorporating the learned geometric features as prior probabilities into the well-established coherent point drift (CPD) algorithm, formulated as differentiable network layer, we establish an end-to-end framework for robust registration of two point sets. Our approach is evaluated on the challenging task of aligning keypoints extracted from lung CT scans in inhale and exhale states with large deformations and without any additional intensity information. Our results indicate that the inherent geometric structure of the extracted keypoints is sufficient to establish descriptive point features, which yield a significantly improved performance and robustness of our registration framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bayer, S., et al.: Intraoperative brain shift compensation using a hybrid mixture model. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 116–124. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_14

    Chapter  Google Scholar 

  2. Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deformations. TPAMI 11(6), 567–585 (1989)

    Article  Google Scholar 

  3. Brachmann, E., et al.: DSAC-differentiable RANSAC for camera localization. In: CVPR, pp. 6684–6692 (2017)

    Google Scholar 

  4. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)

    Article  Google Scholar 

  5. Castillo, R., et al.: A reference dataset for deformable image registration spatial accuracy evaluation using the copdgene study archive. Phys. Med. Biol. 58(9), 2861 (2013)

    Article  Google Scholar 

  6. Ehrhardt, J., Werner, R., Schmidt-Richberg, A., Handels, H.: Automatic landmark detection and non-linear landmark-and surface-based registration of lung CT images. In: Medical Image Analysis for the Clinic-A Grand Challenge, MICCAI 2010, pp. 165–174 (2010)

    Google Scholar 

  7. Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. Med. Image Anal. 12(6), 731–741 (2008)

    Article  Google Scholar 

  8. Heinrich, M.P., Handels, H., Simpson, I.J.A.: Estimating large lung motion in COPD patients by symmetric regularised correspondence fields. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 338–345. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24571-3_41

    Chapter  Google Scholar 

  9. Hu, Y., et al.: Weakly-supervised convolutional neural networks for multimodal image registration. Med. Image Anal. 49, 1–13 (2018)

    Article  Google Scholar 

  10. Myronenko, A., Song, X.: Point set registration: coherent point drift. TPAMI 32(12), 2262–2275 (2010)

    Article  Google Scholar 

  11. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3d classification and segmentation. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  12. Ravikumar, N., Gooya, A., Beltrachini, L., Frangi, A.F., Taylor, Z.A.: Generalised coherent point drift for group-wise multi-dimensional analysis of diffusion brain MRI data. Med. Image Anal. 53, 47–63 (2019)

    Article  Google Scholar 

  13. Tschirren, J., McLennan, G., Palágyi, K., Hoffman, E.A., Sonka, M.: Matching and anatomical labeling of human airway tree. TMI 24(12), 1540–1547 (2005)

    Google Scholar 

  14. de Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum, I.: A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. 52, 128–143 (2019)

    Article  Google Scholar 

  15. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. arXiv preprint arXiv:1801.07829 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lasse Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hansen, L., Dittmer, D., Heinrich, M.P. (2019). Learning Deformable Point Set Registration with Regularized Dynamic Graph CNNs for Large Lung Motion in COPD Patients. In: Zhang, D., Zhou, L., Jie, B., Liu, M. (eds) Graph Learning in Medical Imaging. GLMI 2019. Lecture Notes in Computer Science(), vol 11849. Springer, Cham. https://doi.org/10.1007/978-3-030-35817-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35817-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35816-7

  • Online ISBN: 978-3-030-35817-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics