Skip to main content

Global Scenario of Remediation Techniques to Combat Environmental Pollution

  • Chapter
  • First Online:
Bioremediation and Biotechnology

Abstract

Modernization and industrialization have undoubtedly led to tremendous progress in the development process of countries, but the same has paved way for the pollution of environment as well. Similar advancements are necessary for the development of nations, but pollution-free environment is important for the well-being of living beings. Sustainability of life on Earth is only possible if balance is maintained in the ecosystems, which is threatened by the environmental pollution. Environmental pollution is a global issue which can take heavy toll on living population if left uncontrolled. Various remediation techniques devised across the world to tackle environmental pollution are discussed in this chapter. The techniques for remediation of contaminated soil and groundwater is discussed under ex situ remediation techniques (dig and dump technique, pump-and-treat technique, incineration technique, oxidation technique, adsorption, ion exchange, pyrolysis remediation technique, physical separation technique, dehalogenation technique, bioremediation technique, solidification remediation technique, constructed wetlands), and in situ remediation techniques (biological treatments, physical or chemical treatments, thermal treatments) besides techniques for remediation of air pollution and emerging technologies (nanotechnology, microbial fuel cell technology, ultrasonic technology) have been taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi SA (2018) The myth and the reality of energy recovery from municipal solid waste. Energy Sustain Soc 8:36

    Article  Google Scholar 

  • Adewuyi YG (2001) Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res 40:4681–4715

    Article  CAS  Google Scholar 

  • Alexandratos SD (2008) Ion-exchange resins: a retrospective from industrial and engineering chemistry research. Ind Eng Chem Res 48:388–398

    Article  CAS  Google Scholar 

  • Anonymous (2012) Remediation technologies screening matrix and reference guide version 4.0—remediation technology. Federal Remediation Technologies Roundtable, Washington, DC

    Google Scholar 

  • Arvanitoyannis IS, Kassaveti A, Stefanatos S (2007) Current and potential uses of thermally treated olive oil waste. Int J Food Sci Technol 42:852–867

    Article  CAS  Google Scholar 

  • Cai Z, Dwivedi AD, Lee WN, Zhao WN, Zhao X, Liu W, Sillanpaa M, Zhao D, Huang CH, Fu J (2018) Application of nanotechnologies for removing pharmaceutically active compounds from water: development and future trends. Environ Sci Nano 5(1):27–47

    Article  CAS  Google Scholar 

  • Campbell KM (2009) Radionuclides in surface water and groundwater. In: Ahuja S (ed) Handbook of water purity and quality. Academic, New York, NY, pp 210–213

    Google Scholar 

  • Cervantes MLR, Castillejos E (2019) Perovskites as catalysts in advanced oxidation processes for wastewater treatment. Catalyst 9(3):230

    Article  CAS  Google Scholar 

  • Chouler J, Padgett GA, Cameron PJ, Preuss K, Titirici MM, Ieropoulos I, Lorenzo MD (2016) Towards effective small scale microbial fuel cells for energy generation from urine. Electrochim Acta 192:89–98

    Article  CAS  Google Scholar 

  • Coker C (2006) Environmental remediation by composting. Bio Cycle 47:18–23

    CAS  Google Scholar 

  • Corsia I, Nielsen MW, Sethi R, Puntad C, Della C, Torree D, Libralato G, Lofranog G, Sabatini L, Aielloi M, Fiordi L, Cinuzzi F, Caneschi A, Pellegrini D, Buttino I (2018) Echnologies and nanomaterials for environmental applications: key issue and consensus recommendations for sustainable and ecosafe nanoremediation. Ecotox Environ Safe 154:237–244

    Article  CAS  Google Scholar 

  • Dermont G, Bergeron M, Mercier G, Richer-Lafleche M (2008) Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater 152:1–31

    Article  CAS  PubMed  Google Scholar 

  • Ezziat L, Elabed A, Ibnsouda S, Abed SE (2019) Challenges of microbial fuel cell architecture on heavy metal recovery and removal from wastewater. Front Energy Res 7(1):1–13

    Article  Google Scholar 

  • Giasi CI, Morelli A (2003) A landfarming application technique used as environmental remediation for coal oil pollution. J Environ Sci Health A Tox Hazard Subst Environ Eng 38:1557–1568

    Article  PubMed  CAS  Google Scholar 

  • Gong X, Huang D, Liu Y, Peng Z, Zeng G, Xu P, Cheng M, Wang R, Wan J (2017) Remediation of contaminated soils by biotechnology with nanomaterials: bio-behavior, applications, and perspectives. Crit Rev Biotechnol 38(3):455–468

    Article  PubMed  CAS  Google Scholar 

  • Guerra FD, Attia MF, Whitehead DC, Alexis (2018) Nanotechnology for environmental remediation: materials and applications. Mol 23(1760):1–23

    Google Scholar 

  • Ho NAD, Babel S, Sombatmankhong K (2018) Bio-electrochemical system for recovery of silver coupled with power generation and wastewater treatment from silver(I) diammine complex. J Water Process Eng 23:186–194

    Article  Google Scholar 

  • Huang Y, Wong C, Zheng J, Bouwman H, Barra R, Wahlstrom B, Neretin L, Wong M (2012) Bisphenol a (BPA) in China: a review of sources, environmental levels and potential human health impacts. Environ Int 42:91–99

    Article  CAS  PubMed  Google Scholar 

  • Hutton B (2009) Waste management options to control greenhouse gas emissions—landfill, compost or incineration? Paper for the international solid waste association (ISWA) conference, Portugal, 12–15 Oct 2009, pp 1–10

    Google Scholar 

  • Inguanzo M, Domınguez A, Menendez J, Blanco C, Pis J (2002) On the pyrolysis of sewage sludge: the influence of pyrolysis conditions on solid, liquid and gas fractions. J Anal Appl Pyrol 63:209–222

    Article  CAS  Google Scholar 

  • Isoyama M, Wada SI (2007) Remediation of Pb contaminated soils by washing with hydrochloric acid and subsequent immobilization with calcite and allophanic soil. J Hazard Mater 143:636–642

    Article  CAS  PubMed  Google Scholar 

  • Kim DY, Kadam A, Shinde S, Saratale RG, Patra J, Ghodake G (2017) Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. J Sci Food Agric 98:849–864

    Article  PubMed  CAS  Google Scholar 

  • Kuppusamy S, Palanisami T, Megharaj M, Venkateshwarlu K, Naidu R (2016) Ex-situ remediation Technologies for Environmental Pollutants: a critical perspective. In: Voogt PD (ed) Reviews of environmental contamination and toxicology, vol 236. Springer International, Switzerland, pp 117–192

    Google Scholar 

  • Lodolo A (2019) EUGRIS: portal for soil and water management. www.eugris.info/furtherDescription.asp?&ResourceTypes=True&eugrisid=26&Category=Content_Digests&Title=In%20situ%20treatment%20technologies&showform=&ContentID=3&CountryID=0&ResourceTypes=&DocID=&Tools=Further%20Description

  • Luka Y, Highina BK, Zubairu A (2018) Bioremediation: a solution to environmental pollution review. Am J Eng Res 7(2):101–109

    Google Scholar 

  • Mackay D, Wilson R, Brown M, Ball W, Xia G, Durfee D (2000) A controlled field evaluation of continuous vs. pulsed pump-and-treat remediation of a VOC contaminated aquifer: site characterization, experimental setup and overview of results. J Contamin Hydrol 41:81–131

    Article  CAS  Google Scholar 

  • Mathuriya AS, Yakhmi JV (2014) Microbial fuel cells to recover heavy metals. Environ Chem Lett 12:483–494

    Article  CAS  Google Scholar 

  • Miskan M, Ismail M, Ghasemi M, Jahim MJ, Nordin D, Bakar AMH (2016) Characterization of membrane biofouling and its effect on the performance of microbial fuel cell. Int J Hydrog Energy 41:543–552

    Article  CAS  Google Scholar 

  • Mohee R, Mudhoo A (2012) Methods for the remediation of xenobiotic compounds. In: Mohee R, Mudhoo A (eds) Bioremediation and sustainability: research and applications. Wiley, Hoboken, pp 372–374

    Chapter  Google Scholar 

  • Nimje VR, Chen C, Chen H, Chen C, Tseng M, Cheng K (2012) A single-chamber microbial fuel cell without an air cathode. Int J Mol Sci 13:3933–3948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavel LV, Gavrilescu M (2008) Overview of ex-situ decontamination techniques for soil clean-up. Environ Eng Manag J 7:815–834

    Article  Google Scholar 

  • Poyatos JM, Munio MM, Almecija MC, Torres JC, Hontoria E, Osorio F (2010) Advanced oxidation processes for wastewater treatment: state of the art. Water Air Soil Pollut 205:187–204

    Article  CAS  Google Scholar 

  • Ratwani D, Khatri N, Tyagi S, Pandey G (2018) Nanotechnology-based recent approaches for sensing and remediation of pesticides. J Environ Manag 206:749–762

    Article  CAS  Google Scholar 

  • Rengaraj S, Joo CY, Kim Y, Yi J (2003) Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H. J Hazard Mater 102:257–275

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeldt EJ, Chen PJ, Kullman S, Linden KG (2007) Destruction of estrogenic activity in water using UV advanced oxidation. Sci Total Environ 377:105–113

    Article  CAS  PubMed  Google Scholar 

  • Semple KT, Reid BJ, Fermor TR (2001) Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ Pollut 112:269–283

    Article  CAS  PubMed  Google Scholar 

  • Shafi S, Bhat RA, Bandh SA, Shameem N, Nisa H (2018) Microbes: key agents in the sustainable environment and cycling of nutrients. In: Environmental contamination and remediation. Cambridge Scholars, Cambridge. 152-179-188

    Google Scholar 

  • Thangavadivel K (2010) Development and application of ultrasound technology for treatment of organic pollutants. PhD thesis. University of South Australia, Adelaide

    Google Scholar 

  • Ucar D, Zhang Y, Angelidaki I (2017) An overview of electron acceptors in microbial fuel cells. Front Microbiol 8:643

    Article  PubMed  PubMed Central  Google Scholar 

  • Venderbosch R, Ardiyanti A, Wildschut J, Oasmaa A, Heeres H (2010) Stabilization of biomass derived pyrolysis oils. J Chem Technol Biotechnol 85:674–686

    Article  CAS  Google Scholar 

  • Wang S, Mulligan CN (2004) An evaluation of surfactant foam technology in remediation of contaminated soil. Chemosphere 57:1079–1089

    Article  PubMed  CAS  Google Scholar 

  • WHO (2013) Cancer prevention. World Health Organization, Washington, DC

    Google Scholar 

  • WHO (2018) World Health Organization releases new global air pollution data. www.ccacoalition.org/en/news/world-health-organization-releases-new-global-air-pollution-data

  • Ye S, Zeng G, Wu H, Zhang C, Dai J, Liang J, Yu J, Ren X, Yi H, Cheng M, Zhang C (2017) Biological technologies for the remediation of co-contaminated soil. Crit Rev Biotechnol 37(8):1062–1076

    Article  CAS  PubMed  Google Scholar 

  • Yu MH, Tsunoda H, Tsunoda M (2011) Environmental toxicology: biological and health effects of pollutants. CRC, Boca Raton, pp 24–34

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahzada Mudasir Rashid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamadani, H. et al. (2020). Global Scenario of Remediation Techniques to Combat Environmental Pollution. In: Hakeem, K., Bhat, R., Qadri, H. (eds) Bioremediation and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-35691-0_5

Download citation

Publish with us

Policies and ethics