Skip to main content

Impact of Invasive Plants in Aquatic Ecosystems

  • Chapter
  • First Online:
Bioremediation and Biotechnology

Abstract

Lakes are of great cultural, aesthetic, socioeconomic, and ecological value. They provided incalculable benefits to the people throughout the world. They are essential for the sustainable economy of the state. Lakes provide economic benefits as a result of tourism and recreation. The aesthetic and economic value of the lake ecosystems is declined by alien invasive plants. Aquatic invasions are a serious threat to the lake ecosystems by spreading and growing rapidly. Invasive species displace the native species, decrease the efficacy of ecosystem services, and cause significant losses to the economy. The plants form monospecific stands and impede the water movement. This in turn results in additional negative effects through reduced oxygen levels, bad odor of water, and hence decreases the quality of water. Extreme growth of aquatic weeds may lead to flooding by blocking inlet water channels and left no open space for the water movement. Aquatic invasions are a major setback to the livelihoods of the local communities living in lakes and depend on water resources. Besides pollution, invasion by nonnative plants is a primary concern in the lake ecosystems. Waterlogging by invasive weeds leads to the disruption of recreational uses such as fishing and boating in lakes. Hence, the knowledge of dispersal strategies of invasive plants, time period of perpetuation, and mode of invasion is the prerequisite for management of alien invasive species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baldina EA, Leeuw JD, Gorbunov AK, Labutina IA, Zhivogliad AF, Kooistr JF (1999) Vegetation change in the Astrakhanski Biosphere Reserve (Lower Volga Delta, Russia) in relation to Caspian Sea level fluctuation. Environ Conserv 26:169–178

    Article  Google Scholar 

  • Boers AM, Zedler JB (2008) Stabilized water levels and Typha invasiveness. Wetlands 28:676–685

    Article  Google Scholar 

  • Brundu G (2015) Plant invaders in European and Mediterranean inland waters: profiles, distribution, and threats. Hydrobiology 746:61–79

    Article  Google Scholar 

  • Bunn SE, Arthington AH (2002) Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ Manag 30:492–507

    Article  Google Scholar 

  • Burks RL, Mulderij G, Gross EM, Jones I, Jacobsen L, Jeppesen E, Van Donk E (2006) Center stage: the crucial role of macrophytes in regulating trophic interactions in shallow lake wetlands. In: Bobbink R, Beltmann B, Verhoeven JTA, Whigham DF (eds) Wetlands: functioning, biodiversity conservation and restoration. Springer, Berlin, pp 37–59

    Chapter  Google Scholar 

  • Byers J, Reichard S, Randall J, Parker I, Smith C, Lonsdale W, Atkinson I, Seastedt T, Williamson M, Chornesky E (2002) Directing research to reduce the impacts of non-indigenous species. Conserv Biol 16:630–640

    Article  Google Scholar 

  • Catford JA, Downes BJ, Gippel CJ, Vesk PA (2011) Flow regulation reduces native plant cover and facilitates exotic invasion in riparian wetlands. J Appl Ecol 48:432–442

    Article  Google Scholar 

  • Chambers RM, Meyerson LA, Saltonstall K (1999) Expansion of Phragmites australis into tidal wetlands of North America. Aquat Bot 64:261–273

    Article  Google Scholar 

  • Chew MY, Munirah MY (2009) Ecological implications from the naturalization of noxious Cabomba water weeds in Malaysia. Malays Natur 63:19–21

    Google Scholar 

  • Clewell A, Rieger J (1997) What practitioners need from restoration ecologists. Restor Ecol 5:350–354

    Article  Google Scholar 

  • Cohen AN, Carlton JT (1998) Accelerating invasion rate in a highly invaded estuary. Science 279:555–558

    Article  CAS  PubMed  Google Scholar 

  • Cox JG, Lima SL (2006) Native and an aquatic-terrestrial dichotomy in the effects of introduced predators. Trend Ecol Evol 21:674–680

    Article  Google Scholar 

  • De gasperis BG, Motzkin G (2007) Windows of opportunity: historical and ecological 505 controls on Berberis thunbergii invasions. Ecology 88:3115–3125

    Article  Google Scholar 

  • Drake DAR, Mandrak NE (2010) Least-cost transportation networks predict spatial interaction of invasion vectors. Ecol Appl 20:2286–2299

    Article  PubMed  Google Scholar 

  • Drake JA, Mooney HA, Castri D, Groves RH, Kruger FJ, Rejmanek M, Williamson M (1989) Biological invasions. A global perspective. Wiley, Chichester

    Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Leveque C, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 2:163–182

    Article  Google Scholar 

  • Duran-Sánchez A, Álvarez-García J, Rama M (2018) Sustainable water resources management: a bibliometric overview. Water 10:1191

    Article  Google Scholar 

  • Engelhardt KA (2011) Eutrophication aquatic. In: Simberloff D, Rejmánek M (eds) Encyclopedia of biological invasions. University of California Press, Berkeley, CA, pp 209–213

    Google Scholar 

  • Esteves FA (1988) Fundamentos de Limnologia. Editora Interciencia/FINEP, Rio de Janeiro, p 574

    Google Scholar 

  • Finnoff D, Shogren JF, Leung B, Lodge D (2007) Take a risk: preferring prevention over control of biological invaders. Ecol Econ 62:216–222

    Article  Google Scholar 

  • Flecker AS, Townsend CR (1994) Community—wide consequences of trout introduction in New Zealand streams. Ecol Appl 4:798–807

    Article  Google Scholar 

  • Frank PA (1976) Distribution and utilization research on tropical and subtropical aquatic weeds in United States. In: Aquatic weeds in S.E. Asia. Dr. W. Junk B.V., The Hague, pp 353–360

    Google Scholar 

  • Fraser W (2001) Introduced wildlife in New Zealand: a survey of general public views. Manaaki Whenua Press, Lincoln

    Google Scholar 

  • Fraser A (2006) Public attitudes to pest control: a literature review. Science and Technical Pub., Department of Conservation, Wellington

    Google Scholar 

  • Ganai AH, Parveen S (2014) Effect of physico-chemical conditions on the structure and composition of the phytoplankton community in Wular Lake at Lankrishipora, Kashmir. Int J Biodiver Conserv 6:71–84

    Article  Google Scholar 

  • Garcia-Ramos G, Rodriguez D (2002) Evolutionary speed of species invasions. Evolution 56:661–668

    Article  PubMed  Google Scholar 

  • Getsinger KD, Dibble E, Rodgers JH, Spencer D (2014) Benefits of controlling nuisance aquatic plants and algae in the United States. Council of Agricultural Science and Technology (CAST) Commentary, QTA, Ames, IA, pp 1–12

    Google Scholar 

  • Gherardi F, Holdich DM (1999) Crayfish in Europe as alien species: how to make the best of a bad situation? A.A. Balkema, Rotterdam, pp 221–235

    Google Scholar 

  • Gido KB, Brown JH (1999) Invasion of North American drainages by alien fish species. Fresh Water Biol 42:387–399

    Article  Google Scholar 

  • Gupta OP (1987) Aquatic weed management a text book and manual. Today & Tomorrow Printers and Publishers, New Delhi

    Google Scholar 

  • Hall SR, Mills EL (2000) Exotic species in large lakes of the world. Aquat Ecosyst Health Manag 3:105–135

    Article  Google Scholar 

  • Halstead JM, Michaud J, Hallas-Burt S, Gibbs JP (2003) Hedonic analysis of effects of a nonnative invader (Myriophyllum heterophyllum) on New Hampshire (USA) lakefront properties. Environ Manag 32:391–398

    Article  Google Scholar 

  • Hazra A, Tripathy SD (1985) Nutritive value of aquatic weed Spirodela polyrhiza (Linn.) in grass carp. Indian J Anim Sci 55:702–705

    Google Scholar 

  • Holdich DM, Rogers WD, Reynolds JD (1999) Native and alien crayfish in the British Isles. Crustacean Iss 11:221–236

    Google Scholar 

  • Holm LG, Weldon LW, Blackburn RD (1969) Aquatic weeds. Science 3906:699–709

    Article  Google Scholar 

  • Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18

    Article  Google Scholar 

  • Hussner A (2012) Alien aquatic plant species in European countries. Wed Res 52:297–306

    Article  Google Scholar 

  • Hussner A (2014) Long-term macrophyte mapping documents a continuously shift from native to non-native aquatic plant dominance in the thermally abnormal River Erft (North Rhine-Westphalia, Germany). Limnol Ecol Manag Inland Waters 48:39–45

    Article  Google Scholar 

  • Jeppesen E, Sondergaard M, Sondergaard M, Christofferson K (1998) The structuring role of submerged macrophytes in lakes. Springer, Dordrecht

    Book  Google Scholar 

  • Johnston MJ, Marks CA (1997) Attitudinal survey on vertebrate pest management in Victoria, vol 3. Department of Natural Resources and Environment, Agriculture Victoria, Frankston, VIC

    Google Scholar 

  • Julien MHAS, Bourne (1988) Alligator weed is spreading in Australia. Plant Protect Quart 3:91–96

    Google Scholar 

  • Kay SH, Hoyle ST (2001) Mail order, the internet, and invasive aquatic weeds. J Aqua Plant Manag 1:88–91

    Google Scholar 

  • Kean JMND, Barlow (2000) Effects of dispersal on local population increase. Ecol Lett 3:479–482

    Article  Google Scholar 

  • Keller RP, Lodge DM (2007) Species invasions from commerce in live aquatic organisms—problems and possible solutions. Bioscience 57:428–436

    Article  Google Scholar 

  • Koehn JD (2004) Carp (Cyprinus carpio) as a powerful invader in Australian waterways. Fresh Water Biol 49:882–894

    Article  Google Scholar 

  • Kolar CSDM (2001) Lodge Progress in invasion biology: predicting invaders. Trend Ecol Evol 16:199–204

    Article  Google Scholar 

  • KowarikI (2003) Human agency in biological invasions: secondary releases foster naturalization and population expansion of alien plant species. Biol Invasions 5:293–312

    Google Scholar 

  • Kueffer CC, Kull (2017) Non-native species and the aesthetics of nature. In: Hulme P, Vilà M (eds) Impact of biological invasions on ecosystem services. Springer, Berlin

    Google Scholar 

  • Kumar P, TEEB (2010) The Economics of ecosystems and biodiversity: ecological and economic foundations. Earthscan, London

    Google Scholar 

  • Latini AO, Petrere JM (2004) Reduction of a native fish fauna by alien species: an example from Brazilian freshwater tropical lakes. Fisher Manag Ecol 11:71–79

    Article  Google Scholar 

  • Le Maitre DC, Gaertner M, Marchante E, Ens EJ, Holmes PM, Pauchard A, Richardson DM (2011) Impacts of invasive Australian acacias: implications for management and restoration. Divers Distrib 5:1015–1029

    Article  Google Scholar 

  • Leppakoski E, Olenin S (2000) Nonnative species and rates of spread: lessons from the brackish Baltic Sea. Biol Invas 2:151–163

    Article  Google Scholar 

  • Leprieur F, Beauchard O, Hugueny B, Grenouillet G, Brosse S (2008) Null model of biotic homogenization: a test with the European freshwater fish fauna. Diver Distri 14:291–300

    Article  Google Scholar 

  • Levine JMD, Antonio CM (2003) Forecasting biological invasion with increasing international trade. Conserv Biol 17:322–326

    Article  Google Scholar 

  • Liu JM, Dong S, Miao Z, Li M, Song R, Wang (2006) Invasive alien plants in China: role of clonality and geographical origin. Biol Invasions 8:1461–1470

    Article  Google Scholar 

  • Lloret F, Dail F, Brundu G, Hulme PE (2004) Local and regional abundance of exotic plant species on Mediterranean islands: are species traits important? Glob Ecol Biogeogr 13:37–45

    Article  Google Scholar 

  • Lodge DM (1993) Biological invasions: lessons for ecology. Trends Ecol Evol 8:133–137

    Article  CAS  PubMed  Google Scholar 

  • Lovell SJ, Stone SF, Fernandez L (2006) The economic impacts of aquatic invasive species: a review of the literature. Agric Resour Econ Rev 35:195–208

    Article  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  • Madsen JD, Sutherland JW, Bloomfield JA, Eichler LW, Boylen CW (1991) The decline of native vegetation under dense Eurasian watermill foils canopies. J Aqua Plant Manag 29:94–99

    Google Scholar 

  • Marothia DK (2004) Restoration of lake ecosystem: an environmental economics perspective. Int Ecol Environ Sci 30:197–207

    Google Scholar 

  • Maurer DA, Zedler JB (2002) Differential invasion of a wetland grass explained by tests of nutrients and light availability on establishment and clonal growth. Oecologia 131:279–288

    Article  PubMed  Google Scholar 

  • McNeely JA (2001) The great reshuffling: Human dimensions of invasive alien species. IUCN, Gland

    Google Scholar 

  • McGeoch MA, Butchart SHM, Spear D, Marais E, Kleynhans EJ, Symes A, Chanson J, Hoffmann M (2010) Global indicators of biological invasion: species numbers, biodiversity impact and policy responses. Divers Distr 16:95–108

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: current state and trends: findings of the Condition and Trends Working Group. Island Press, Washington, DC

    Google Scholar 

  • Morse LE, Kartesz JT, Kutner LS (1995) Native vascular plants. In: La Roe ET, Farris GS, Puckett CE, Doran PD, Mac MJ (eds) Our living resources: a report to the nation on the distribution, abundance, and health of U.S. plants, animals and ecosystems. U.S. Department of the Interior, National Biological Service, Washington, DC, pp 205–209

    Google Scholar 

  • Moyle PB, Leidy RA (1992) Loss of biodiversity in aquatic ecosystems: evidence from fish faunas. In: Conserv Biol. Springer, Boston, MA, pp 127–169

    Chapter  Google Scholar 

  • Narayan S, Nabi A, Hussain K, Khan FA (2017) Practical aspects of utilizing aquatic weeds in compost preparation

    Google Scholar 

  • National Research Council (2000) Global change ecosystems research. National Academy Press, Washington, DC, p 2

    Google Scholar 

  • Nesler TP, Bergersen EP (1991) Mysis in fisheries: hard lessons from headlong introductions. American Fisheries Society symposium no. 9, Bethesda

    Google Scholar 

  • NRC (National Research Council, Transportation Research Board) (2008) Great Lakes shipping, trade, and aquatic invasive species. National Academy Press, Washington, DC, p 226

    Google Scholar 

  • Ogunye O (1988) Water hyacinth—Nigerian experience. In: Oke OL, Imevbore AMA, Farri TA (eds) Water hyacinth menace and resource. Proceedings of international workshop. COSTED, Lagos, pp 7–12

    Google Scholar 

  • Olden JD, JM, JT MC, Maxted WW, Fetzer JM, Zanen V (2006) The rapid spread of rusty crayfish (Orconectes rusticus) with observations on native crayfish declines in Wisconsin (U.S.A.) over the past 130 years. Biol Invasions 8:1621–1628

    Article  Google Scholar 

  • Papes M, Sallstrom M, Asplund TR, Vander Zanden MJ (2011) Invasive species research to meet the needs of resource management and. Conserv Biol 25:867–872

    Article  CAS  PubMed  Google Scholar 

  • Pejchar L, Mooney HA (2009) Invasive species, ecosystem services and human wellbeing. Trends Ecol Evol 24:497–504

    Article  PubMed  Google Scholar 

  • Perrings C, Williamson M, Dalmazzone S (2000) The economics of biological invasions. Edward Elgar, Cheltenham

    Book  Google Scholar 

  • Perrings C, Williamson M, Barbier EB, Delfino D, Dalmazzone S, Shogren J, Simmons P, Watkinson A (2002) Biological invasions risks and the public good: an economic perspective. Conserv Ecol 6:1

    Article  Google Scholar 

  • Pimental D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288

    Article  Google Scholar 

  • Pimentel D (ed) (2002) Biological invasions economic and environmental costs of alien plant, animal, and microbe species. CRC Press, Boca Raton, FL

    Google Scholar 

  • Pirie NW (1971) Leaf protein, its agronomy, preparation, quality and use, International Biological Programme Handbook No. 20. Blackwell Sci. Pub., Oxford, p 202

    Google Scholar 

  • Pollock M, Naiman RJ, Hanley TA (1998) Plant species richness in riparian wetlands-a test of biodiversity theory. Ecology 79:94–105

    Google Scholar 

  • Postel S, Carpenter S (1997) Freshwater ecosystem services. Nat Serv 1997:195–214

    Google Scholar 

  • Rast W (2014) The 15th world lake conference: an overview of an informative event. Lakes Res 19:237–239

    Article  Google Scholar 

  • Ricciardi A (2006) Patterns of invasion in the Laurentian Great Lakes in relation to changes in vector activity. Divers Distrib 4:425–433

    Article  Google Scholar 

  • Ricciardi A, Kipp R (2008) Predicting the number of ecologically harmful exotic species in an aquatic system. Divers Distrib 14:374–380

    Article  Google Scholar 

  • Ricciardi A, Mac Isaac HJ (2005) Impacts of biological invasions on fresh water ecosystems. In: Fifty years of invasion ecology: the legacy of Charles Elton, vol 1. Blackwell, Chichester, pp 211–224

    Google Scholar 

  • Richardson DM, Pysek P, Rejmanek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 2:93–107

    Article  Google Scholar 

  • Rockwell HW (2003) Summary of a survey of the literature on the economic impact of aquatic weeds. Aquatic Ecosystem Restoration Foundation

    Google Scholar 

  • Rommens W, Maes J, Dekeza N, Inghelbrecht P, Nhiwatiwa T, Holsters E, Ollevier F, Marshall B, Brengdonck L (2003) The impact of water hyacinth (Eichhornia crassipes) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe). I. Water quality. Hydrobiologie 158:373–388

    Article  Google Scholar 

  • Ruiz GM, Fofonoff PW, Carlton JT, Wonham MJ, Hines AH (2000) Invasion of coastal marine communities in North America: apparent patterns, processes, and biases. Anal Rev Ecol Syst 31:481–531

    Article  Google Scholar 

  • Rupinder K, Bhawandeep K, Sanjay BK (2014) Sharma documentation of aquatic invasive alien flora of Jammu region, Jammu and Kashmir. Int J Interdiscip Multidiscip Stud 7:90–96

    Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Natl Acad Sci 99:2445–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santamaria L (2002) Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecol 23:137–154

    Article  Google Scholar 

  • Santos MJ, Anderson LWJ, Ustin SL (2011) Effects of invasive species on plant communities: an example using submersed aquatic plants at the regional scale. Biol Invasions 3:443–457

    Article  Google Scholar 

  • Schackleton RT, Le Maitre DC, Pasiecznik NM, Richardson DM (2014) Prosopis: a global assessment of the biogeography, benefits, impacts and management of one of the world’s worst woody invasive plant taxa. AoB Plants 6:plu027

    Google Scholar 

  • Schallenberg M, Sorell B (2009) Regime shifts between clear and turbid water in New Zealand lakes: environmental correlates and implications for management and restoration. Mar Freshw Res 43:701–712

    Article  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  CAS  PubMed  Google Scholar 

  • Schmitz DC, Schardt JD, Leslie AJ, Dray FA, Osborne JA, Nelson BV(1993) The ecological impact and management history of three invasive alien aquatic plant species in Florida. In: Biological pollution: the control and impact of invasive exotic species. Proceedings of a symposium held at Indianapolis, IN, USA, 25–26. Indiana Academy of Science, pp 173–194

    Google Scholar 

  • Schultz R, Dibble E (2012) Effects of invasive macrophytes on freshwater fish and macro invertebrate communities: the role of invasive plant traits. Hydrobiologia 684:1–14

    Article  Google Scholar 

  • Shah MA, Reshi ZA (2014) Characterization of alien aquatic flora of Kashmir Himalaya: implications for invasion management. Trop Ecol 2:143–157

    CAS  Google Scholar 

  • Sharip Z, Jusoh J (2010) Integrated Lake Basin management and its importance for Lake Chini and other lakes in Malaysia. Lakes Reserv 15:41–51

    Article  Google Scholar 

  • Sharma S, Jackson DA, Minns CK (2009) Quantifying the potential effects of climate change and the invasion of smallmouth bass on native lake trout populations across Canadian lakes. Ecography 32:517–525

    Article  Google Scholar 

  • Shillinglaw SN (1981) Dissolved oxygen depletion and nutrient uptake in an impoundment infested with Eichhornia crassipes (Mart.) Solms. J Limnol Soc S Afr 7:63–66

    CAS  Google Scholar 

  • Shine C (2006) Small world means endangered world. International Herald Tribune

    Google Scholar 

  • Simberloff D (2009) The role of propagule pressure in biological invasions. Ann Rev Ecol Evol Syst 40:81–102

    Article  Google Scholar 

  • Simberloff D, Parker IM, Windle PN (2005) Introduced species policy, management, and future research needs. Front Ecol Environ 1:12–20

    Article  Google Scholar 

  • Stachowicz JJ (2002) Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions. Proc Natl Acad Sci U S A 99:15497–15500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiers I, Crohain N, Josens G, Triest L (2011) Impact of three aquatic invasive species on native plants and macroinvertebrates in temperate ponds. Biol Invas 13:2715–2726

    Article  Google Scholar 

  • Strecker AL, Campbell PM, Olden JD (2011) The aquarium trade as an invasion pathway in the Pacific Northwest. Fisheries 36:74–85

    Article  Google Scholar 

  • Taylor KG, Bates RP, Robbins RC (1971) Extraction of protein from water hyacinth. Hyacinth Contr 9:20–22

    Google Scholar 

  • Theel HJ, Dibble ED, Madsen JD (2008) Differential influence of a monotypic and diverse native aquatic plant bed on a macro invertebrate assemblage; an experimental implication of exotic plant induced habitat. Hydrobiologia 600:77–87

    Article  Google Scholar 

  • Thouvenot L, Haury J, Thiebaut GA (2013) Success story: water primroses, aquatic plant pests. Aquat Conserv 23:790–803

    Google Scholar 

  • Tickner DP, Angold PG, Gurnell AM, Mountford JO (2001) Riparian plant invasions: hydro geo morphological control and ecological impacts. Prog Phys Geog 25:22–52

    Article  Google Scholar 

  • Timmons FL, Klingman DL (1958) Control of aquatic and bank weeds. Soil Conserv 24:102–107

    Google Scholar 

  • Twongo T (1993) Growing impact of water hyacinth on near shore environments of Lakes Victoria and Kyoga (East Africa). In: Johnson TC, Odada E (eds) Proceedings of a symposium: the limnology, climatology and paleoclimatology of East African Lakes, 18–22 Feb, Jinja, Uganda, 1996

    Google Scholar 

  • Twongo T, Howard G (1998) Ways with weeds. New Sci 159:57–57

    Google Scholar 

  • Valley RD, Bremigan MT (2002) Effect of macrophyte bed architecture on largemouth bass foraging: implications of exotic macrophyte invasions. Trans Am Fish Soc 131:234–244

    Article  Google Scholar 

  • Vander zanden MJ, Hansen GJ, Higgins SN, Kornis MS (2010) A pound of prevention, plus a pound of cure: early detection and eradication of invasive species in the Laurentian Great Lakes. Great Lakes Res 36:199–205

    Article  Google Scholar 

  • Vilà M, Basnou C, Pyšek P, Josefsson M, Genovesi P, Gollasch S, Hulme PE (2010) How well do we understand the impacts of alien species on ecosystem services? Apan-European, cross-taxa assessment. Front Ecol Environ 8:135–144

    Article  Google Scholar 

  • Villamagna AM, Murphy BR (2010) Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshw Biol 55:282–298

    Article  Google Scholar 

  • Vitousek PMD, Antonio CM, Loope LL, Rejmanek M, Westbrooks R (1997) Introduced species: a significant component of human—caused global change. N Z J Ecol 21:1–16

    Google Scholar 

  • Wade M (1997) Predicting plant invasions: Making a start. In: Brock JH, Wade M, Pysek P, Green D (eds) Plant invasions: studies from north America and Europe. Backhuys, Leiden, pp 1–18

    Google Scholar 

  • Waikato (2006) Pests affect our cultural heritage [www document]. http://www.ew.govt.nz/For-schools/Resources-for-teachers/Classroom-activities/Biosecurity-activities

  • Wilcove DS, Rothstein DJ, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States. Bioscience 48:607–615

    Article  Google Scholar 

  • Willby NJVJ, Abernethy BOL, Demars (2000) Attribute based classification of European hydrophytes and its relationship to habitat utilization. Fresh Biol 43:43–74

    Article  Google Scholar 

  • Williamson M (1996) Biological invasions. Chapman & Hall, London

    Google Scholar 

  • Witte F, Goldschmidt T, Wanink J (1992) The destruction of an endemic species flock: quantitative data on the decline of the haplochromine cichlids of Lake Victoria. Environ Biol Fish 34:1–28

    Article  Google Scholar 

  • Xu CYSS, Schooler RD, van Klinken (2010) Effects of clonal integration and light availability on the growth and physiology of two invasive herbs. J Ecol 98:833–844

    Article  Google Scholar 

  • Yarrow M, Marín VH, Finlayson M, Tironi A, Delgado LE, Fischer F (2009) The ecology of Egeria densa Planchon (Liliopsida: Alismatales): a wetland ecosystem engineer? Rev Chil Hist Nat 82:299–313

    Article  Google Scholar 

  • Zelder JB, Kercher S (2004) Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Crit Rev Plant Sci 23:431–452

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hassan, A., Nawchoo, I.A. (2020). Impact of Invasive Plants in Aquatic Ecosystems. In: Hakeem, K., Bhat, R., Qadri, H. (eds) Bioremediation and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-35691-0_3

Download citation

Publish with us

Policies and ethics