Skip to main content

DINE: A Framework for Deep Incomplete Network Embedding

  • Conference paper
  • First Online:
AI 2019: Advances in Artificial Intelligence (AI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11919))

Included in the following conference series:

  • 2169 Accesses

Abstract

Network representation learning (NRL) plays a vital role in a variety of tasks such as node classification and link prediction. It aims to learn low-dimensional vector representations for nodes based on network structures or node attributes. While embedding techniques on complete networks have been intensively studied, in real-world applications, it is still a challenging task to collect complete networks. To bridge the gap, in this paper, we propose a Deep Incomplete Network Embedding method, namely DINE. Specifically, we first complete the missing part including both nodes and edges in a partially observable network by using the expectation-maximization framework. To improve the embedding performance, we consider both network structures and node attributes to learn node representations. Empirically, we evaluate DINE over three networks on multi-label classification and link prediction tasks. The results demonstrate the superiority of our proposed approach compared against state-of-the-art baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://linqs.soe.ucsc.edu/data.

  2. 2.

    https://www.aminer.cn/billboard/citation.

  3. 3.

    http://socialcomputing.asu.edu/datasets/BlogCatalog.

References

  1. Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V., Smola, A.J.: Distributed large-scale natural graph factorization. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 37–48. ACM (2013)

    Google Scholar 

  2. Bai, X., Lee, I., Ning, Z., Tolba, A., Xia, F.: The role of positive and negative citations in scientific evaluation. IEEE Access 5, 17607–17617 (2017)

    Article  Google Scholar 

  3. Bhagat, S., Cormode, G., Muthukrishnan, S.: Node classification in social networks. In: Aggarwal, C. (ed.) Social Network Data Analytics, pp. 115–148. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-8462-3_5

    Chapter  Google Scholar 

  4. Buccafurri, F., Lax, G., Nocera, A., Ursino, D.: Discovering missing me edges across social networks. Inf. Sci. 319, 18–37 (2015)

    Article  MathSciNet  Google Scholar 

  5. Cai, L., et al.: Scholarly impact assessment: a survey of citation weighting solutions. Scientometrics 118(2), 453–478 (2019)

    Article  Google Scholar 

  6. Clauset, A., Moore, C., Newman, M.E.: Hierarchical structure and the prediction of missing links in networks. Nature 453(7191), 98 (2008)

    Article  Google Scholar 

  7. Gao, H., Huang, H.: Deep attributed network embedding. In: IJCAI, vol. 18, pp. 3364–3370 (2018)

    Google Scholar 

  8. Gao, S., Denoyer, L., Gallinari, P.: Temporal link prediction by integrating content and structure information. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 1169–1174. ACM (2011)

    Google Scholar 

  9. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey. Knowl.-Based Syst. 151, 78–94 (2018)

    Article  Google Scholar 

  10. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM (2016)

    Google Scholar 

  11. Guimerà, R., Sales-Pardo, M.: Missing and spurious interactions and the reconstruction of complex networks. Proc. Natl. Acad. Sci. 106(52), 22073–22078 (2009)

    Article  Google Scholar 

  12. Keshavan, R.H., Montanari, A., Oh, S.: Matrix completion from a few entries. IEEE Trans. Inf. Theory 56(6), 2980–2998 (2010)

    Article  MathSciNet  Google Scholar 

  13. Kim, M., Leskovec, J.: The network completion problem: inferring missing nodes and edges in networks. In: Proceedings of the 2011 SIAM International Conference on Data Mining, pp. 47–58. SIAM (2011)

    Google Scholar 

  14. Kossinets, G.: Effects of missing data in social networks. Soc. Netw. 28(3), 247–268 (2006)

    Article  Google Scholar 

  15. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.: Kronecker graphs: an approach to modeling networks. J. Mach. Learn. Res. 11, 985–1042 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Physica A 390(6), 1150–1170 (2011)

    Article  Google Scholar 

  17. McCormick, T.H., Salganik, M.J., Zheng, T.: How many people do you know?: Efficiently estimating personal network size. J. Am. Stat. Assoc. 105(489), 59–70 (2010)

    Article  MathSciNet  Google Scholar 

  18. Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserving graph embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1105–1114. ACM (2016)

    Google Scholar 

  19. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

    Google Scholar 

  20. Rossi, R.A., Zhou, R., Ahmed, N.K.: Deep inductive network representation learning. In: Companion Proceedings of the Web Conference 2018, pp. 953–960. International World Wide Web Conferences Steering Committee (2018)

    Google Scholar 

  21. Tang, J., Liu, J., Zhang, M., Mei, Q.: Visualizing large-scale and high-dimensional data. In: Proceedings of the 25th International Conference on World Wide Web, pp. 287–297. International World Wide Web Conferences Steering Committee (2016)

    Google Scholar 

  22. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077. International World Wide Web Conferences Steering Committee (2015)

    Google Scholar 

  23. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  24. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234. ACM (2016)

    Google Scholar 

  25. Wang, W., Liu, J., Yang, Z., Kong, X., Xia, F.: Sustainable collaborator recommendation based on conference closure. IEEE Trans. Comput. Soc. Syst. 6(2), 311–322 (2019)

    Article  Google Scholar 

  26. Xia, F., Asabere, N.Y., Liu, H., Chen, Z., Wang, W.: Socially aware conference participant recommendation with personality traits. IEEE Syst. J. 11(4), 2255–2266 (2014)

    Article  Google Scholar 

  27. Xu, B., et al.: Protein complexes detection based on global network representation learning. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 210–213. IEEE (2018)

    Google Scholar 

  28. Yang, D., Wang, S., Li, C., Zhang, X., Li, Z.: From properties to links: deep network embedding on incomplete graphs. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 367–376. ACM (2017)

    Google Scholar 

  29. Zhang, D., Yin, J., Zhu, X., Zhang, C.: Network representation learning: a survey. IEEE Trans. Big Data (2018)

    Google Scholar 

  30. Zhu, S., Yu, K., Chi, Y., Gong, Y.: Combining content and link for classification using matrix factorization. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 487–494. ACM (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hou, K., Liu, J., Peng, Y., Xu, B., Lee, I., Xia, F. (2019). DINE: A Framework for Deep Incomplete Network Embedding. In: Liu, J., Bailey, J. (eds) AI 2019: Advances in Artificial Intelligence. AI 2019. Lecture Notes in Computer Science(), vol 11919. Springer, Cham. https://doi.org/10.1007/978-3-030-35288-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35288-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35287-5

  • Online ISBN: 978-3-030-35288-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics