Skip to main content

Ionic Liquid–Liquid Chromatography: A Novel Separation Method

  • Chapter
  • First Online:
Commercial Applications of Ionic Liquids

Abstract

There is a wide selection of ionic liquid /(water/organic solvents ) biphasic mixtures . These mixtures could be utilized for liquid–liquid extractions in countercurrent chromatography for the separation of organic, inorganic, and bio-based materials. A customized countercurrent chromatography has been designed and constructed specifically to adapt to the more viscous character of ionic liquid -based solvent systems to be used in a broad variety of separations (including transition metal salts, arenes , alkenes , alkanes , bio-oils , and sugars ).

This chapter is dedicated to the memory of our brilliant and inspirational co-author Professor Kenneth R. Seddon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Snyder LR, Kirkland JJ (1979) Introduction to modern liquid chromatography, 2nd edn. Wiley, New York

    Google Scholar 

  2. Conway WD, Petroski RJ (eds) (1995) Modern countercurrent chromatography. In: ACS Symposium Series 593. Washington, DC

    Google Scholar 

  3. Sutherland IA, Brown L, Forbes S, Games G, Hawes D, Hostettmann K, McKerrell EH, Marston A, Wheatley D, Wood P (1998) Countercurrent chromatography (CCC) and its versatile application as an industrial purification & production process. J Liq Chromatogr Relat Technol 21:279. https://doi.org/10.1080/10826079808000491

  4. Berthod A, Serge A (2005) Industrial applications of CCC. In: Encyclopedia of chromatography, 2nd edn. (ed: Cazes JE). CRC Press, Boca Raton, p 833

    Google Scholar 

  5. Oka F, Oka H, Ito Y (1991) Systematic search for suitable two-phase solvent systems for high-speed counter-current chromatography. J Chromatogr 538:99. https://doi.org/10.1016/s0021-9673(01)91626-7

  6. Friesen JB, Pauli GF (2007) Rational development of solvent system families in counter-current chromatography. J Chromatogr A 1151:51. https://doi.org/10.1016/j.chroma.2007.01.126

  7. Rafson HJ (ed) (1998) Odor and VOC control handbook. McGraw-Hill, New York

    Google Scholar 

  8. Brennecke JF, Maginn EJ (2001) Ionic liquids: innovative fluids for chemical processing. AIChE J 47:2384. https://doi.org/10.1002/aic.690471102

  9. a: Wasserscheid P, Welton T (eds) (2008) Ionic liquids in synthesis, vol 1, 2nd edn. Wiley-VCH, Weinheim, Germany; b: Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123 http://doi.org/10.1039/b006677j; c: Freemantle M (2010) An introduction to ionic liquids. Royal Society of Chemistry, Cambridge, UK

  10. a: Anderson JL, Armstrong DW, Wei G-T (2006) Ionic liquids in analytical chemistry. Anal Chem 78:2892 http://doi.org/10.1021/ac069394o; b: Arce A, Earle MJ, Rodríguez H, Seddon KR, Soto A (2009) Bis{(trifluoromethyl)sulfonyl}amide ionic liquids as solvents for the extraction of aromatic hydrocarbons from their mixtures with alkanes: effect of the nature of the cation. Green Chem 11:365. http://doi.org/10.1039/b814189d

  11. Sutherland IA (2007) Recent progress on the industrial scale-up of counter-current chromatography. J Chromatogr A 1151:6. https://doi.org/10.1016/j.chroma.2007.01.143

  12. Marchal L, Legrand J, Foucault A (2003) Centrifugal partition chromatography: a survey of its history, and our recent advances in the field. Chem Rec 3:133. https://doi.org/10.1002/tcr.10057

  13. Berthod A, Carda-Broch S (2004) Use of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate in countercurrent chromatography. Anal Bioanal Chem 380:168. https://doi.org/10.1007/s00216-004-2717-8

  14. a: Brown L, Earle MJ, Gîlea MA, Plechkova NV, Seddon KR (2017) Ionic liquid–liquid separations using countercurrent chromatography: a new general-purpose separation methodology. Aust J Chem 70:923 https://doi.org/10.1071/CH17004; b: Fan C, Cao L, Liu M, Wang W (2016) , Determination of Alternaria mycotoxins in wine and juice using ionic liquid modified countercurrent chromatography as a pretreatment method followed by high-performance liquid chromatography. J Chromatogr A 1436:133 http://doi.org/10.1016/j.chroma.2016.01.069

  15. Earle MJ, Seddon KR, Self R, Brown L (2013) Ionic liquid separations. WO2013121218A1

    Google Scholar 

  16. Brown L, Earle MJ, Gîlea MA, Plechkova NV, Seddon KR (2017) Ionic liquid–liquid chromatography: a new general purpose separation methodology. Top Curr Chem 375:74. https://doi.org/10.1007/s41061-017-0159-y

  17. Ito Y, Conway W (1986) High-speed countercurrent chromatography. Crit Rev Anal Chem 17:65. https://doi.org/10.1080/10408348608542792

  18. Ito Y, Bowman RL (1970) Countercurrent chromatography: liquid-liquid partition chromatography without solid support. Science 167:281. https://doi.org/10.1126/science.167.3916.281

  19. Rubio N, Ignatova S, Minguillón C, Sutherland IA (2009) Multiple dual-mode countercurrent chromatography applied to chiral separations using a (S)-naproxen derivative as chiral selector. J Chromatogr A 1216:8505. https://doi.org/10.1016/j.chroma.2009.10.006

  20. Ito Y (1996) High-speed countercurrent chromatography. In: Chemical analysis, vol 132 (eds: Ito Y, Conway WD). Wiley, New York, p 3

    Google Scholar 

  21. Ito Y, Weinstein M, Aoki I, Harada R, Kimura E, Nunogaki K (1966) The coil planet centrifuge. Nature 212:985. https://doi.org/10.1038/212985a0

  22. Ito Y, Bowman RL (1970) Countercurrent chromatography: liquid-liquid partition chromatography without solid support. J Chromatogr Sci 8:315. https://doi.org/10.1093/chromsci/8.6.315

  23. Ignatova S, Hawes D, van den Heuvel R, Hewitson P, Sutherland IA (2010) A new non-synchronous preparative counter-current centrifuge—the next generation of dynamic extraction/chromatography devices with independent mixing and settling control, which offer a step change in efficiency. J Chromatogr A 1217:34. https://doi.org/10.1016/j.chroma.2009.10.055

  24. Sutherland IA, Heywood-Waddington D, Ito Y (1987) Counter-current chromatography: applications to the separation of biopolymers, organelles and cells using either aqueous—organic or aqueous—aqueous phase systems. J Chromatogr 384:197. https://doi.org/10.1016/s0021-9673(01)94671-0

  25. Margraff R, Intes O, Renault JH, Garret P (2005) Partitron 25, a multi‐purpose industrial centrifugal partition chromatograph: rotor design and preliminary results on efficiency and stationary phase retention. J Liq Chromatogr Relat Technol 28:1893 https://doi.org/10.1081/jlc-200063539

  26. a: Earle M, Seddon K (2013) Ionic liquid separations WO2013121219A1; b: Earle MJ, Gilea MA (2013) Lentinan extraction process from mushrooms using ionic liquid WO2013140185A1; c: Earle MJ, Seddon KR (2013) Ionic liquid separations WO2013121220A1

    Google Scholar 

  27. Earle MJ, Seddon KR (2000) Ionic liquids. Green solvents for the future. Pure Appl Chem 72:1391. https://doi.org/10.1351/pac200072071391

  28. Reichardt C, Welton T (2011) Solvents and solvent effects in organic chemistry, 4th edn. Wiley-VCH, Weinheim

    Google Scholar 

  29. Earle MJ, Esperança JMSS, Gilea MA, Canongia Lopes JN, Rebelo LPN, Magee JW, Seddon KR, Widegren JA (2006) The distillation and volatility of ionic liquids. Nature 439:831. https://doi.org/10.1038/nature04451

    Article  CAS  PubMed  Google Scholar 

  30. Petkovic M, Seddon KR, Rebelo LPN, Silva Pereira C (2011) Ionic liquids: a pathway to environmental acceptability. Chem Soc Rev 40:1383. http://doi.org/10.1039/c004968a

  31. Carmichael AJ, Earle MJ, Holbrey JD, McCormac PB, Seddon KR (1999) The Heck reaction in ionic liquids:  a multiphasic catalyst system. Org Lett 1:997. https://doi.org/10.1021/ol9907771

  32. Keim W, Korth W, Wasserscheid P (2000) Ionic liquids, WO/2000/016902

    Google Scholar 

  33. Arce A, Earle MJ, Rodríguez H, Seddon KR (2007) Separation of benzene and hexane by solvent extraction with 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide ionic liquids: effect of the alkyl-substituent length. J Phys Chem B 111:4732. https://doi.org/10.1021/jp066377u

  34. Berthod A, Carda-Broch S (2003) A new class of solvents for CCC: the room temperature ionic liquids. J Liq Chromatogr Relat Technol 26:1493. https://doi.org/10.1081/jlc-120021262

  35. Berthod A, Maryutina T, Spivakov B, Shpigun O, Sutherland IA (2009) Countercurrent chromatography in analytical chemistry (IUPAC technical report). Pure Appl Chem 81:355. https://doi.org/10.1351/pac-rep-08-06-05

  36. Seddon KR (1999) Proceedings of the International George Papatheodorou Symposium (eds: Boghosian S, Dracopoulos V, Kontoyannis CG, Voyiatzis GA). Institute of Chemical Engineering and High Temperature Chemical Processes, Patras, Greece, p 131

    Google Scholar 

  37. Patell Y, Seddon KR, Dutta L, Fleet A (2003) The dissolution of kerogen in ionic liquids. In: Green industrial applications of ionic liquids, NATO Science Series II, vol 92 (eds: Rogers RD, Seddon KR, Volkov S). Springer, Dordrecht, p 499

    Google Scholar 

  38. Müller M, Englert M, Earle MJ, Vetter W (2017) Development of solvent systems with room temperature ionic liquids for the countercurrent chromatographic separation of very nonpolar lipid compounds. J Chromatogr A 1488:68. https://doi.org/10.1016/j.chroma.2017.01.074

  39. Fan C, Li N, Cao X (2015) Determination of chlorophenols in red wine using ionic liquid countercurrent chromatography as a new pretreatment method followed by high‐performance liquid chromatography. J Sep Sci 38:2109. https://doi.org/10.1002/jssc.201500172

  40. Franco P, Blanc J, Oberleitner WR, Maier NM, Lindner W, Minguillón C (2002) Enantiomer separation by countercurrent chromatography using cinchona alkaloid derivatives as chiral selectors. Anal Chem 74:4175. https://doi.org/10.1021/ac020209q

  41. Wang S, Han C, Wang S, Bai L, Li S, Luo J, Kong L (2016) Development of a high speed counter-current chromatography system with Cu(II)-chiral ionic liquid complexes and hydroxypropyl-β-cyclodextrin as dual chiral selectors for enantioseparation of naringenin. J Chromatogr A 1471:155. https://doi.org/10.1016/j.chroma.2016.10.036

  42. Zhu Z, Zhang W, Pranolo Y, Cheng CY (2012) Separation and recovery of copper, nickel, cobalt and zinc in chloride solutions by synergistic solvent extraction. Hydrometallurgy 127:1. https://doi.org/10.1016/j.hydromet.2012.07.001

  43. Wellens S, Goovaerts R, Möller C, Luyten J, Thijs B, Binnemans K (2013) A continuous ionic liquid extraction process for the separation of cobalt from nickel. Green Chem 15:3160. https://doi.org/10.1039/c3gc41519h

  44. Kauffman GB, Adams ML (1989) The separation of cobalt from nickel by anion exchange chromatography. J Chem Educ 66:166. https://doi.org/10.1021/ed066p166

  45. a: Bhave NS, Dhudey SR, Kharat RB (1978) Separation of copper(II), nickel(II), palladium(II), and cobalt(II) chelates with 4-S-benzyl-l-p-Cl-phenyl-5-phenyl-2,4-isodithiobiuret (BPPTB) from their binary mixture by adsorption thin-layer chromatography. Sep Sci Technol 13:193. http://doi.org/10.1080/01496397808057101; b: Mohammad A, Iraqi E, Sirwal YH (2003) New TLC system for simultaneous separation of iron, cobalt, and nickel ions from acidic and ammoniacal solutions. Sep Sci Technol 38:2255. http://doi.org/10.1081/ss-120021623

  46. Khuhawar MY, Soomro AI (1993) Gas and liquid chromatographic studies of copper(II), nickel(II), palladium(II) and oxovanadium(IV) chelates of some fluorinated ketoamine Schiff bases. J Chromatogr A 639:371. https://doi.org/10.1016/0021-9673(93)80279-H

  47. Toyota E, Itoh K, Sekizaki H, Tanizawa K (1996) Chromatographic separation of diastereomeric schiff base copper(II), nickel(II), and zinc(II) chelates from α-amino acid racemates. Bioorg Chem 24:150. https://doi.org/10.1006/bioo.1996.0013

  48. Mirza MA, Khuhawar MY, Arain R, Choudhary MA, Kandhro AJ, Jahangir TM (2013) Micellar Electrokinetic Chromatographic Separation/Determination of Uranium, Iron, Copper and Nickel From Environmental Ore Samples Using Bis(salicylaldehyde)meso-stilbenediimine as Chelating Reagent. Asian J Chem 25:3719. http://dx.doi.org/10.14233/ajchem.2013.13728

  49. Loonker S, Sethia JK (2009) Use of newly synthesized guar based chelating ion exchange resin in chromatographic separation of copper from nickel ions. Bulg Chem Commun 41:19

    Google Scholar 

  50. Vláčil F, Khanh HD, (1980) Extraction-chromatographic separation of iron from cobalt, nickel, and copper using dibenzyl sulphoxide solution as the stationary phase. Fresenius Z Anal Chem 302:36. https://doi.org/10.1007/bf00469760

  51. Anderson K, Rodríguez H, Seddon KR (2009) Phase behaviour of trihexyl(tetradecyl)phosphonium chloride, nonane and water. Green Chem 11:780. https://doi.org/10.1039/b821925g

  52. a: Wood PL, Hawes D, Janaway L, Sutherland IA (2003) Stationary phase retention in CCC: modelling the J‐type centrifuge as a constant pressure drop pump. J Liq Chromatogr Relat Technol 26:1373. http://doi.org/10.1081/jlc-120021256; b: He C-H, Zhao C-X (2007) Retention of the stationary phase for high‐speed countercurrent chromatography. AIChE J 53:1460. http://doi.org/10.1002/aic.11185

  53. Barrera NM, McCarty JL, Dragojlovic V (2002) Effects of Concentration on Hexaaquacobalt(II)/Tetrachlorocobalt(II) Equilibrium. A Discovery-Oriented Experiment for Chemistry Students. Chem Educ 7:142. https://doi.org/10.1007/s00897020559a

  54. Arce A, Earle MJ, Katdare SP, Rodríguez H, Seddon KR (2006) Mutually immiscible ionic liquids. Chem Commun 2548. http://doi.org/10.1039/b604595b

  55. a: Winter A, Thiel K, Zabel A, Klamroth T, Pöppl A, Kelling A, Schilde U, Taubert A, Strauch P (2014) Tetrahalidocuprates(II)—structure and EPR spectroscopy. Part 2: tetrachloridocuprates(II). New J Chem 38:1019. http://doi.org/10.1039/c3nj01039b. b: Ruhlandt-Senge K, Müller U (1990) Kristallstrukturen der Tetrachloroniccolate (PPh4)2[NiCl4] und [Na-15-Krone-5]2[NiCl4]/Crystal structures of the tetrachloroniccolates (PPh4)2[NiCl4] and [Na-15-Crown-5]2[NiCl4]. Z Naturforsch (B) 45:995. https://doi.org/10.1515/znb-1990-0714; c: Piecha-Bisiorek A, Bieńko A, Jakubas R, Boča R, Weselski M, Kinzhybalo V, Pietraszko A, Wojciechowska M, Medycki W, Kruk D (2016) Physical and structural characterization of imidazolium-based organic–inorganic hybrid: (C3N2H5)2[CoCl4]. J Phys Chem A 120:2014. http://doi.org/10.1021/acs.jpca.5b11924

  56. Williamson Y, Davis JM (2005) Modeling of anti‐Langmuirian peaks in micellar electrokinetic chromatography: benzene and naphthalene. Electrophoresis 26:4026. https://doi.org/10.1002/elps.200500245

  57. Verzele M, Simoens G, Van Damme F (1987) A critical review of some liquid chromatography systems for the separation of sugars. Chromatographia 23:292. https://doi.org/10.1007/BF02311783

  58. Nitsch E (1974) Method of producing fructose and glucose from sucrose. US patent 3,812,010

    Google Scholar 

  59. a: Shaw PE, Wilson III CW (1983) Separation of fructose, glucose and sucrose in fruit by high performance liquid chromatography using UV detection at 190 nm. J Sci Food Agric 34:109. http://doi.org/10.1002/JSFA.2740340116; b: Filip M, Vlassa M, Coman V, Halmagyi A (2016) Simultaneous determination of glucose, fructose, sucrose and sorbitol in the leaf and fruit peel of different apple cultivars by the HPLC–RI optimized method. Food Chem 199:653. http://doi.org/10.1016/j.foodchem.2015.12.060; c: Schmid T, Baumann B, Himmelsbach M, Klampfl CW, Buchberger W (2016) Analysis of saccharides in beverages by HPLC with direct UV detection. Anal Bioanal Chem 408:1871. http://doi.org/10.1007/s00216-015-9290-1

  60. González J, Remaud G, Jamin E, Naulet N, Martin GG (1999) Specific natural isotope profile studied by isotope ratio mass spectrometry (SNIP−IRMS):  13C/12C ratios of fructose, glucose, and sucrose for improved detection of sugar addition to pineapple juices and concentrates. J Agric Food Chem 47:2316. https://doi.org/10.1021/JF981093V

  61. Véronèse T, Bouchu A, Perlot P (1999) Rapid method for trehalulose production and its purification by preparative high-performance liquid chromatography. Biotechnol Tech 13:43. https://doi.org/10.1023/a:1008857613103

  62. Shinomiya K, Ito Y (2006) Countercurrent chromatographic separation of biotic compounds with extremely hydrophilic organic‐aqueous two‐phase solvent systems and organic‐aqueous three‐phase solvent systems. J Liq Chromatogr Relat Technol 29:733. https://doi.org/10.1080/10826070500509298

  63. Doremus RH (1985) Crystallization of sucrose from aqueous solution. J Colloid Interface Sci 104:114. https://doi.org/10.1016/0021-9797(85)90015-3

  64. Kim H-J, Chen F, Wang X, Chung HY, Jin ZY (2005) Evaluation of antioxidant activity of vetiver (Vetiveria zizanioides L.) oil and identification of its antioxidant constituents. J Agric Food Chem 53:7691. https://doi.org/10.1021/JF050833E

  65. a: Adams RP, Zhong M, Turuspekov Y, Dafforn MR, Veldkamp JF (1998) DNA fingerprinting reveals clonal nature of Vetiveria zizanioides (L.) Nash, Gramineae and sources of potential new germplasm. Mol Ecol 7:813. http://doi.org/10.1046/J.1365-294X.1998.00394.X; b: Guenther E (1950) The essential oils, vol 4 (ed: Guenther E). Van Nostrand, New York, p 156

  66. Guenther E (1948) The essential oils: history—origin in plants—production—analysis, vol 1 (ed: Guenther E). Van Nostrand, New York, p 153

    Google Scholar 

  67. Massardo DR, Senatore F, Alifano P, Del Giudice L, Pontieri P (2006) Vetiver oil production correlates with early root growth. Biochem Syst Ecol 34:376. https://doi.org/10.1016/J.BSE.2005.10.016

  68. Fahlbusch K-G, Hammerschmidt F-J, Panten J, Pickenhagen W, Schatkowski D, Bauer K, Garbe D, Surburg H (2005) Flavors and fragrances. In: Ullmann's Encyclopedia of Industrial Chemistry, vol 1–3 (ed: Elvers B). Wiley-VCH, Weinheim, Germany, p 1. https://doi.org/10.1002/14356007.a11_141

  69. a: Chahal KK, Bhardwaj U, Kaushal S, Sandhu AK (2015) Chemical composition and biological properties of Chrysopogan zizanoides (L.) Roberty syn. Vetiveria zizanoides (L.) Nash—a review, Indian J Nat Prod Resour 6:251; b: Mallavarapu GR, Syamasundar KV, Ramesh S, Rajeswara Rao BR (2012) Constituents of south Indian vetiver oils. Nat Prod Commun 7:223. https://doi.org/10.1177/1934578X1200700228

  70. a: Maeda YY, Watanabe ST, Chihara C, Rokutanda M (1988) Denaturation and renaturation of a ß-1,6;1,3-glucan, lentinan, associated with expression of T-cell-mediated responses, Cancer Res 48:671; b: Xu X, Zhang X, Zhang L, Wu C (2004) Collapse and association of denatured lentinan in water/dimethylsulfoxide solutions. Biomacromolecules 5:1893. http://doi.org/10.1021/bm049785h; c: Xu X, Wang X, Cai F, Zhang L (2010) Renaturation of triple helical polysaccharide lentinan in water-diluted dimethylsulfoxide solution. Carbohydr Res 345:419. http://doi.org/10.1016/j.carres.2009.10.013

  71. Jiang ZG, Du QZ, Sheng LY (2009) Separation and purification of lentinan by preparative high speed counter current chromatography. Chinese J Anal Chem 37:412

    Google Scholar 

  72. a: Ignatova S, Wood P, Hawes D, Janaway L, Keay D, Sutherland I (2007) Feasibility of scaling from pilot to process scale. J Chromatogr A 1151:20. https://doi.org/10.1016/j.chroma.2007.02.084; b: Sutherland IA (2010) Encyclopedia of chromatography, vol. 3, 3rd edn. (ed: Cazes J). Taylor & Francis, Boca Raton, p 2116; c: Sutherland IA, Booth AJ, Brown L, Kemp B, Kidwell H, Games D, Graham AS, Guillon GG, Hawes D, Hayes M, Janaway L, Lye GJ, Massey P, Preston C, Shering P, Shoulder T, Strawson C, Wood P (2001) Industrial scale-up of countercurrent chromatography. J Liq Chromatogr Relat Technol 24:1533. https://doi.org/10.1081/jlc-100104362; d: Sutherland IA, Brown L, Graham AS, Guillon GG, Hawes D, Janaway L, Whiteside R, Wood P (2001) Industrial scale-up of countercurrent chromatography. J Chromatogr Sci 39:21. https://doi.org/10.1093/chromsci/39.1.21; e: Sutherland I, Hawes D, Ignatova S, Janaway L, Wood P (2005) Review of progress toward the industrial scale‐up of CCC. J Liq Chromatogr Relat Technol 28:1877. https://doi.org/10.1081/jlc-200063521; f: Sutherland I, Ignatova S, Hewitson P, Janaway L, Wood P, Edwards N, Harris G, Guzlek H, Keay D, Freebairn K, Johns D, Douillet N, Thickitt C, Vilminot E, Mathews B (2011) Scalable technology for the extraction of pharmaceutics (STEP): the transition from academic knowhow to industrial reality. J Chromatogr A 1218:6114. https://doi.org/10.1016/j.chroma.2011.01.016

  73. Abai M, Atkins MP, Hassan A, Holbrey JD, Kuah Y, Nockemann P, Oliferenko AA, Plechkova NV, Rafeen S, Rahman AA, Ramli R, Shariff SM, Seddon KR, Srinivasan G, Zou Y (2015) An ionic liquid process for mercury removal from natural gas. Dalton Trans 44:8617. https://doi.org/10.1039/C4DT03273J

  74. a: Earle MJ, Gordon CM, Plechkova NV, Seddon KR, Welton T (2007) Decolorization of ionic liquids for spectroscopy. Anal Chem 79:758. http://doi.org/10.1021/ac061481t; b: Earle MJ, Gordon CM, Plechkova NV, Seddon KR, Welton T (2007) Welton, Decolorization of ionic liquids for spectroscopy. Anal Chem 79:4247. https://doi.org/10.1021/ac070746g

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martyn J. Earle or Natalia V. Plechkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brown, L., Earle, M.J., Gilea, M.A., Plechkova, N.V., Seddon, K.R. (2020). Ionic Liquid–Liquid Chromatography: A Novel Separation Method. In: Shiflett, M. (eds) Commercial Applications of Ionic Liquids. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-35245-5_7

Download citation

Publish with us

Policies and ethics