Skip to main content

On the Security of Multikey Homomorphic Encryption

  • Conference paper
  • First Online:
Cryptography and Coding (IMACC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11929))

Included in the following conference series:

Abstract

Multikey fully homomorphic encryption (MFHE) scheme enables homomorphic computation on data encrypted under different keys. To decrypt a result ciphertext, all the involved secret keys are required. For multi decryptor setting, decryption is a protocol with minimal interaction among parties. However, all prior schemes supporting the protocol are not secure in public channel against a passive external adversary who can see any public information not joining the protocol. Furthermore, the possible adversaries have not been defined clearly.

In this paper, we revisit the security of MFHE and present a secure one-round decryption protocol. We apply it to one of existing schemes and prove the scheme is secure against possible static adversaries. As an application, we construct a two round multiparty computation without common random string.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_29

    Chapter  Google Scholar 

  2. Boneh, D., et al.: Threshold cryptosystems from threshold fully homomorphic encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 565–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_19

    Chapter  Google Scholar 

  3. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 190–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_8

    Chapter  Google Scholar 

  4. Chen, L., Zhang, Z., Wang, X.: Batched multi-hop multi-key FHE from Ring-LWE with compact ciphertext extension. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp. 597–627. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_20

    Chapter  Google Scholar 

  5. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_1

    Chapter  MATH  Google Scholar 

  6. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 377–408. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_14

    Chapter  Google Scholar 

  7. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomorphic encryption over the torus. Cryptology ePrint Archive, Report 2018/421 (2018). https://eprint.iacr.org/2018/421

  8. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 630–656. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_31

    Chapter  Google Scholar 

  9. Kim, E., Hyang-Sook Lee, J.P.: Towards round-optimal secure multiparty computations: multikey FHE without a CRS. Cryptology ePrint Archive, Report 2018/1156 (2018). https://eprint.iacr.org/2018/1156

  10. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round complexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_16

    Chapter  Google Scholar 

  11. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_16

    Chapter  Google Scholar 

  12. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

    Chapter  Google Scholar 

  13. Hao Chen, I.C., Song, Y.: Multi-key homomophic encryption from tfhe. Cryptology ePrint Archive, Report 2019/116 (2019). https://eprint.iacr.org/2019/116

  14. Hao Chen, Wei Dai, M.K., Song, Y.: Efficient multi-key homomorphic encryption with packed ciphertexts with application to oblivious neural network inference. Cryptology ePrint Archive, Report 2019/524 (2019). https://eprint.iacr.org/2019/524

  15. Kim, E., Lee, H.-S., Park, J.: Towards round-optimal secure multiparty computations: multikey FHE without a CRS. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 101–113. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3_7

    Chapter  Google Scholar 

  16. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Karloff, H.J., Pitassi, T. (eds.) 44th Annual ACM Symposium on Theory of Computing, pp. 1219–1234. ACM Press, New York, 19–22 May 2012. https://doi.org/10.1145/2213977.2214086

  17. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_26

    Chapter  Google Scholar 

  18. Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 217–238. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_9

    Chapter  Google Scholar 

Download references

Acknowledgement

Hyang-Sook Lee and Jeongeun Park were supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2018R1A2A1A05079095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeongeun Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, HS., Park, J. (2019). On the Security of Multikey Homomorphic Encryption. In: Albrecht, M. (eds) Cryptography and Coding. IMACC 2019. Lecture Notes in Computer Science(), vol 11929. Springer, Cham. https://doi.org/10.1007/978-3-030-35199-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35199-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35198-4

  • Online ISBN: 978-3-030-35199-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics