Skip to main content

Awake Testing to Confirm Target Engagement

  • Chapter
  • First Online:
Stereotactic and Functional Neurosurgery

Abstract

Clinical testing of the awake patient during or prior to functional neurosurgical procedures such as deep brain stimulator (DBS) placement, focused ultrasound (FUS), or epilepsy surgeries is a valuable tool to verify that the appropriate target has been engaged for purposes of improving symptoms. This testing also serves to identify potential adverse effects of surgical therapy that may limit efficacy or lead to poor outcomes. The treating clinician should be familiar with both the regional anatomy and brain circuitry involved in these diseases states, as well as the testing sequences, parameters, and interpretation of results in order to make appropriate therapeutic decisions for individual patients. This chapter reviews testing patients with movement and neuropsychiatric disorders during DBS or FUS procedures and patients with epilepsy prior to surgical intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALIC:

Anterior limb of the internal capsule

CM–Pf:

Centromedian–parafascicular complex

DBS:

Deep brain stimulation

EEG:

Electroencephalogram

FDG:

Fluorodeoxyglucose

FUS:

Focused ultrasound

GPi:

Globus pallidus interna

Hz:

Hertz

mA:

Milliamperes

MEG:

Magnetoencephalography

MER:

Microelectrode recording

MRI:

Magnetic resonance imaging

OCD:

Obsessive compulsive disorder

PD:

Parkinson’s disease

PET:

Positron emission tomography

RNS:

Responsive neurostimulation

SCG:

Subcallosal cingulate gyrus

SEEG:

Stereo-encephalography

SISCOM:

Subtraction ictal SPECT co-registered to MRI

SPECT:

Single-photon emission computed tomography

SPM:

Statistical parametric mapping

STN:

Subthalamic nucleus

TS:

Tourette syndrome

Usec:

Microseconds

V:

Volts

Vc:

Ventral caudal nucleus

VC/VS:

Ventral caudate/ventral striatum

ViM:

Ventral intermediate nucleus

VNS:

Vagal nerve stimulation

References

  1. Youngerman BE, Chan AK, Mikell CB, McKhann GM, Sheth SA. A decade of emerging indications: deep brain stimulation in the United States. J Neurosurg. 2016;125(2):461–71.

    Article  PubMed  Google Scholar 

  2. Lee PS, Weiner GM, Corson D, Kappel J, Chang YF, Suski VR, et al. Outcomes of interventional-MRI versus microelectrode recording-guided subthalamic deep brain stimulation. Front Neurol. 2018;9:241.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Park SC, Lee CS, Kim SM, Choi EJ, Lee JK. Comparison of the stereotactic accuracies of function-guided deep brain stimulation, calculated using multitrack target locations geometrically inferred from three-dimensional trajectory rotations, and of magnetic resonance imaging-guided deep brain stimulation and outcomes. World Neurosurg. 2017;98:734–49. e7

    Article  PubMed  Google Scholar 

  4. Brodsky MA, Anderson S, Murchison C, Seier M, Wilhelm J, Vederman A, et al. Clinical outcomes of asleep vs awake deep brain stimulation for Parkinson disease. Neurology. 2017;89(19):1944–50.

    Article  PubMed  Google Scholar 

  5. Sammartino F, Krishna V, King NK, Lozano AM, Schwartz ML, Huang Y, et al. Tractography-based ventral intermediate nucleus targeting: novel methodology and intraoperative validation. Mov Disord. 2016;31(8):1217–25.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yao C, Horn A, Li N, Lu Y, Fu Z, Wang N, et al. Post-operative electrode location and clinical efficacy of subthalamic nucleus deep brain stimulation in Meige syndrome. Parkinsonism Relat Disord. 2019;58:40–5.

    Article  PubMed  Google Scholar 

  7. Deng Z, Pan Y, Zhang C, Zhang J, Qiu X, Zhan S, et al. Subthalamic deep brain stimulation in patients with primary dystonia: a ten-year follow-up study. Parkinsonism Relat Disord. 2018;55:103–10.

    Article  PubMed  Google Scholar 

  8. Ostrem JL, San Luciano M, Dodenhoff KA, Ziman N, Markun LC, Racine CA, et al. Subthalamic nucleus deep brain stimulation in isolated dystonia: a 3-year follow-up study. Neurology. 2017;88(1):25–35.

    Article  PubMed  Google Scholar 

  9. Ruge D, Tisch S, Hariz MI, Zrinzo L, Bhatia KP, Quinn NP, et al. Deep brain stimulation effects in dystonia: time course of electrophysiological changes in early treatment. Mov Disord. 2011;26(10):1913–21.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Karas PJ, Lee S, Jimenez-Shahed J, Goodman WK, Viswanathan A, Sheth SA. Deep brain stimulation for obsessive compulsive disorder: evolution of surgical stimulation target parallels changing model of dysfunctional brain circuits. Front Neurosci. 2018;12:998.

    Article  PubMed  Google Scholar 

  11. Morishita T, Fayad SM, Goodman WK, Foote KD, Chen D, Peace DA, et al. Surgical neuroanatomy and programming in deep brain stimulation for obsessive compulsive disorder. Neuromodulation. 2014;17(4):312–9; discussion 9.

    Article  PubMed  Google Scholar 

  12. Haq IU, Foote KD, Goodman WG, Wu SS, Sudhyadhom A, Ricciuti N, et al. Smile and laughter induction and intraoperative predictors of response to deep brain stimulation for obsessive-compulsive disorder. NeuroImage. 2011;54 Suppl 1:S247–55.

    Article  PubMed  Google Scholar 

  13. Viswanathan A, Jimenez-Shahed J, Baizabal Carvallo JF, Jankovic J. Deep brain stimulation for Tourette syndrome: target selection. Stereotact Funct Neurosurg. 2012;90(4):213–24.

    Article  PubMed  Google Scholar 

  14. Maciunas RJ, Maddux BN, Riley DE, Whitney CM, Schoenberg MR, Ogrocki PJ, et al. Prospective randomized double-blind trial of bilateral thalamic deep brain stimulation in adults with Tourette syndrome. J Neurosurg. 2007;107(5):1004–14.

    Article  PubMed  Google Scholar 

  15. Ackermans L, Duits A, van der Linden C, Tijssen M, Schruers K, Temel Y, et al. Double-blind clinical trial of thalamic stimulation in patients with Tourette syndrome. Brain. 2011;134(Pt 3):832–44.

    Article  PubMed  Google Scholar 

  16. Kefalopoulou Z, Zrinzo L, Jahanshahi M, Candelario J, Milabo C, Beigi M, et al. Bilateral globus pallidus stimulation for severe Tourette’s syndrome: a double-blind, randomised crossover trial. Lancet Neurol. 2015;14(6):595–605.

    Article  PubMed  Google Scholar 

  17. Welter ML, Houeto JL, Thobois S, Bataille B, Guenot M, Worbe Y, et al. Anterior pallidal deep brain stimulation for Tourette’s syndrome: a randomised, double-blind, controlled trial. Lancet Neurol. 2017;16(8):610–9.

    Article  PubMed  Google Scholar 

  18. Jimenez-Shahed J. Design challenges for stimulation trials of Tourette’s syndrome. Lancet Neurol. 2015;14(6):563–5.

    Article  PubMed  Google Scholar 

  19. Niemann N, Strutt A, Viswanathan A, Jimenez Shahed J. Safety profile of unblinded internal pllidal deep bain stimulation for medically refractory Tourette syndrome (P1.045). Neurology. 2016;86(16 Supplement):P1.045.

    Google Scholar 

  20. Visser-Vandewalle V, Temel Y, Boon P, Vreeling F, Colle H, Hoogland G, et al. Chronic bilateral thalamic stimulation: a new therapeutic approach in intractable Tourette syndrome. Report of three cases. J Neurosurg. 2003;99(6):1094–100.

    Article  PubMed  Google Scholar 

  21. Servello D, Porta M, Sassi M, Brambilla A, Robertson MM. Deep brain stimulation in 18 patients with severe Gilles de la Tourette syndrome refractory to treatment: the surgery and stimulation. J Neurol Neurosurg Psychiatry. 2008;79(2):136–42.

    Article  CAS  PubMed  Google Scholar 

  22. Drobisz D, Damborska A. Deep brain stimulation targets for treating depression. Behav Brain Res. 2019;359:266–73.

    Article  PubMed  Google Scholar 

  23. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45(5):651–60.

    Article  CAS  PubMed  Google Scholar 

  24. Lozano AM, Mayberg HS, Giacobbe P, Hamani C, Craddock RC, Kennedy SH. Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol Psychiatry. 2008;64(6):461–7.

    Article  PubMed  Google Scholar 

  25. Riva-Posse P, Choi KS, Holtzheimer PE, Crowell AL, Garlow SJ, Rajendra JK, et al. A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol Psychiatry. 2018;23(4):843–9.

    Article  CAS  PubMed  Google Scholar 

  26. Malone DA Jr, Dougherty DD, Rezai AR, Carpenter LL, Friehs GM, Eskandar EN, et al. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry. 2009;65(4):267–75.

    Article  PubMed  Google Scholar 

  27. Machado A, Haber S, Sears N, Greenberg B, Malone D, Rezai A. Functional topography of the ventral striatum and anterior limb of the internal capsule determined by electrical stimulation of awake patients. Clin Neurophysiol. 2009;120(11):1941–8.

    Article  PubMed  Google Scholar 

  28. Schlaepfer TE, Bewernick BH, Kayser S, Madler B, Coenen VA. Rapid effects of deep brain stimulation for treatment-resistant major depression. Biol Psychiatry. 2013;73(12):1204–12.

    Article  PubMed  Google Scholar 

  29. Fenoy AJ, Schulz P, Selvaraj S, Burrows C, Spiker D, Cao B, et al. Deep brain stimulation of the medial forebrain bundle: distinctive responses in resistant depression. J Affect Disord. 2016;203:143–51.

    Article  PubMed  Google Scholar 

  30. Schlaepfer TE, Bewernick BH. Deep brain stimulation for major depression. Handb Clin Neurol. 2013;116:235–43.

    Article  CAS  PubMed  Google Scholar 

  31. Elias WJ, Lipsman N, Ondo WG, Ghanouni P, Kim YG, Lee W, et al. A randomized trial of focused ultrasound thalamotomy for essential tremor. N Engl J Med. 2016;375(8):730–9.

    Article  PubMed  Google Scholar 

  32. Schlesinger I, Sinai A, Zaaroor M. MRI-guided focused ultrasound in Parkinson’s disease: a review. Parkinsons Dis. 2017;2017:8124624.

    PubMed  PubMed Central  Google Scholar 

  33. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010;51(6):1069–77.

    Article  CAS  PubMed  Google Scholar 

  34. Ho K, Lawn N, Bynevelt M, Lee J, Dunne J. Neuroimaging of first-ever seizure: contribution of MRI if CT is normal. Neurol Clin Pract. 2013;3(5):398–403.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Von Oertzen J, Urbach H, Jungbluth S, Kurthen M, Reuber M, Fernandez G, et al. Standard magnetic resonance imaging is inadequate for patients with refractory focal epilepsy. J Neurol Neurosurg Psychiatry. 2002;73(6):643–7.

    Article  Google Scholar 

  36. Shih JJ, Fountain NB, Herman ST, Bagic A, Lado F, Arnold S, et al. Indications and methodology for video-electroencephalographic studies in the epilepsy monitoring unit. Epilepsia. 2018;59(1):27–36.

    Article  PubMed  Google Scholar 

  37. LoPinto-Khoury C, Sperling MR, Skidmore C, Nei M, Evans J, Sharan A, et al. Surgical outcome in PET-positive, MRI-negative patients with temporal lobe epilepsy. Epilepsia. 2012;53(2):342–8.

    Article  PubMed  Google Scholar 

  38. Salamon N, Kung J, Shaw SJ, Koo J, Koh S, Wu JY, et al. FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology. 2008;71(20):1594–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. von Oertzen TJ, Mormann F, Urbach H, Reichmann K, Koenig R, Clusmann H, et al. Prospective use of subtraction ictal SPECT coregistered to MRI (SISCOM) in presurgical evaluation of epilepsy. Epilepsia. 2011;52(12):2239–48.

    Article  Google Scholar 

  40. Matsuda H, Matsuda K, Nakamura F, Kameyama S, Masuda H, Otsuki T, et al. Contribution of subtraction ictal SPECT coregistered to MRI to epilepsy surgery: a multicenter study. Ann Nucl Med. 2009;23(3):283–91.

    Article  PubMed  Google Scholar 

  41. McNally KA, Paige AL, Varghese G, Zhang H, Novotny EJ Jr, Spencer SS, et al. Localizing value of ictal-interictal SPECT analyzed by SPM (ISAS). Epilepsia. 2005;46(9):1450–64.

    Article  PubMed  Google Scholar 

  42. Sulc V, Stykel S, Hanson DP, Brinkmann BH, Jones DT, Holmes DR 3rd, et al. Statistical SPECT processing in MRI-negative epilepsy surgery. Neurology. 2014;82(11):932–9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kharkar S, Knowlton R. Magnetoencephalography in the presurgical evaluation of epilepsy. Epilepsy Behav. 2015;46:19–26.

    Article  PubMed  Google Scholar 

  44. Almubarak S, Alexopoulos A, Von-Podewils F, Wang ZI, Kakisaka Y, Mosher JC, et al. The correlation of magnetoencephalography to intracranial EEG in localizing the epileptogenic zone: a study of the surgical resection outcome. Epilepsy Res. 2014;108(9):1581–90.

    Article  PubMed  Google Scholar 

  45. Beers CA, Federico P. Functional MRI applications in epilepsy surgery. Can J Neurol Sci. 2012;39(3):271–85.

    Article  PubMed  Google Scholar 

  46. Szaflarski JP, Gloss D, Binder JR, Gaillard WD, Golby AJ, Holland SK, et al. Practice guideline summary: use of fMRI in the presurgical evaluation of patients with epilepsy: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2017;88(4):395–402.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mansouri A, Fallah A, Valiante TA. Determining surgical candidacy in temporal lobe epilepsy. Epilepsy Res Treat. 2012;2012:706917.

    PubMed  PubMed Central  Google Scholar 

  48. Burgess RC, Funke ME, Bowyer SM, Lewine JD, Kirsch HE, Bagic AI, et al. American Clinical Magnetoencephalography Society Clinical Practice Guideline 2: presurgical functional brain mapping using magnetic evoked fields. J Clin Neurophysiol. 2011;28(4):355–61.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Papanicolaou AC, Simos PG, Castillo EM, Breier JI, Sarkari S, Pataraia E, et al. Magnetocephalography: a noninvasive alternative to the Wada procedure. J Neurosurg. 2004;100(5):867–76.

    Article  PubMed  Google Scholar 

  50. Wellmer J, von der Groeben F, Klarmann U, Weber C, Elger CE, Urbach H, et al. Risks and benefits of invasive epilepsy surgery workup with implanted subdural and depth electrodes. Epilepsia. 2012;53(8):1322–32.

    Article  PubMed  Google Scholar 

  51. Gonzalez-Martinez JA. The stereo-electroencephalography: the epileptogenic zone. J Clin Neurophysiol. 2016;33(6):522–9.

    Article  PubMed  Google Scholar 

  52. Duncan JS, Winston GP, Koepp MJ, Ourselin S. Brain imaging in the assessment for epilepsy surgery. Lancet Neurol. 2016;15(4):420–33.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Taylor MD, Bernstein M. Awake craniotomy with brain mapping as the routine surgical approach to treating patients with supratentorial intraaxial tumors: a prospective trial of 200 cases. J Neurosurg. 1999;90(1):35–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joohi Jimenez-Shahed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, N.J., Gavvala, J.R., Jimenez-Shahed, J. (2020). Awake Testing to Confirm Target Engagement. In: Pouratian, N., Sheth, S. (eds) Stereotactic and Functional Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-030-34906-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34906-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34905-9

  • Online ISBN: 978-3-030-34906-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics