Skip to main content

Modulation of Calcium Handling: Calcium-Channel Modulators

  • Chapter
  • First Online:
Antiarrhythmic Drugs

Part of the book series: Current Cardiovascular Therapy ((CCT))

  • 969 Accesses

Abstract

Several calcium channels (L, N, T, P, Q and R) were identified in humans. Of these channels, voltage-sensitive L-type and T-type calcium channels are mainly operative in cardiovascular system. There are five classes of calcium channel blocking drugs: phenylalkylamines, dihydropyridines, benzothiazepines, diphenylpiperazines, and a diarylaminopropylamine. Clinically available calcium channel blockers are dihydropyridines, benzothiazepines and phenylalkylamines. These calcium channel blockers (CCB) are selective and inhibit voltage–sensitive L-type slow calcium channels mediated calcium influx in cardiac myocytes and in smooth muscle by slowing the activation of the L-type calcium channel and also delay its recovery from inactivation. To show its effect, the drugs travel through the slow channel and bind to channel from the inner side of the membrane. They bind more effectively when the channels are in open and in inactivated state and reduce opening frequency of the channels. Verapamil and diltiazem block calcium channels in use (frequency)-dependent (effect is more apparent at faster rates) and in voltage-dependent fashion (more effective blockage in depolarized fibers).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thomas Michel BH. Calcium channel antagonists. In: Knollman LBBCB, editor. Goodman & Gilman’s the pharmacological basisi of therapeutics. 12th ed. New York: McGraw Hill; 2011. p. 755–60.

    Google Scholar 

  2. Page RL, Joglar JA, Caldwell MA, Calkins H, Conti JB, Deal BJ, et al. 2015 ACC/AHA/HRS guideline for the management of adult patients with supraventricular tachycardia: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation. 2016;133(14):e471–505.

    PubMed  Google Scholar 

  3. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20.

    Article  CAS  Google Scholar 

  4. Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Phys. 1983;245(1):C1–14.

    Article  CAS  Google Scholar 

  5. Milberg P, Fink M, Pott C, Frommeyer G, Biertz J, Osada N, et al. Blockade of I(Ca) suppresses early afterdepolarizations and reduces transmural dispersion of repolarization in a whole heart model of chronic heart failure. Br J Pharmacol. 2012;166(2):557–68.

    Article  CAS  Google Scholar 

  6. Cheng H, Lederer WJ. Calcium sparks. Physiol Rev. 2008;88(4):1491–545.

    Article  CAS  Google Scholar 

  7. Fleischer S, Ogunbunmi EM, Dixon MC, Fleer EA. Localization of Ca2+ release channels with ryanodine in junctional terminal cisternae of sarcoplasmic reticulum of fast skeletal muscle. Proc Natl Acad Sci U S A. 1985;82(21):7256–9.

    Article  CAS  Google Scholar 

  8. Heijman J, Voigt N, Nattel S, Dobrev D. Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ Res. 2014;114(9):1483–99.

    Article  CAS  Google Scholar 

  9. Lehnart SE, Maier LS, Hasenfuss G. Abnormalities of calcium metabolism and myocardial contractility depression in the failing heart. Heart Fail Rev. 2009;14(4):213–24.

    Article  CAS  Google Scholar 

  10. Gorski PA, Ceholski DK, Hajjar RJ. Altered myocardial calcium cycling and energetics in heart failure--a rational approach for disease treatment. Cell Metab. 2015;21(2):183–94.

    Article  CAS  Google Scholar 

  11. Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation. 2001;103(2):196–200.

    Article  CAS  Google Scholar 

  12. Lahat H, Pras E, Olender T, Avidan N, Ben-Asher E, Man O, et al. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am J Hum Genet. 2001;69(6):1378–84.

    Article  CAS  Google Scholar 

  13. Antzelevitch C, Pollevick GD, Cordeiro JM, Casis O, Sanguinetti MC, Aizawa Y, et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 2007;115(4):442–9.

    Article  Google Scholar 

  14. Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 2004;119(1):19–31.

    Article  CAS  Google Scholar 

  15. Santonastasi M, Wehrens XH. Ryanodine receptors as pharmacological targets for heart disease. Acta Pharmacol Sin. 2007;28(7):937–44.

    Article  CAS  Google Scholar 

  16. Mickelson JR, Louis CF. Malignant hyperthermia: excitation-contraction coupling, Ca2+ release channel, and cell Ca2+ regulation defects. Physiol Rev. 1996;76(2):537–92.

    Article  CAS  Google Scholar 

  17. Kaneko N, Matsuda R, Hata Y, Shimamoto K. Pharmacological characteristics and clinical applications of K201. Curr Clin Pharmacol. 2009;4(2):126–31.

    Article  CAS  Google Scholar 

  18. Hilliard FA, Steele DS, Laver D, Yang Z, Le Marchand SJ, Chopra N, et al. Flecainide inhibits arrhythmogenic Ca2+ waves by open state block of ryanodine receptor Ca2+ release channels and reduction of Ca2+ spark mass. J Mol Cell Cardiol. 2010;48(2):293–301.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erol Tülümen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tülümen, E., Borggrefe, M. (2020). Modulation of Calcium Handling: Calcium-Channel Modulators. In: Martínez-Rubio, A., Tamargo, J., Dan, G . (eds) Antiarrhythmic Drugs. Current Cardiovascular Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-34893-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34893-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34891-5

  • Online ISBN: 978-3-030-34893-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics