Skip to main content

Beta-blockers as Antiarrhythmic Agents

  • Chapter
  • First Online:
Antiarrhythmic Drugs

Abstract

Beta-adrenergic receptor blockers represent a heterogeneous class with more than 50 years of continuous development. Beta-blockers are one of the most used therapeutic classes and their efficacy was proven in a wide range of cardiovascular diseases, including arrhythmias, in both acute and chronic settings. There are multiple beta-blocking agents currently in use, varying in properties like β-selectivity, intrinsic sympathomimetic activity, mode of administration, lipid solubility, or pharmacokinetic properties. Their main cardiovascular pharmacological effect is related to the competitive β1-receptor blockade. As antiarrhythmics, beta-blockers usually represent the first choice for controlling heart rate in any supraventricular tachycardia. They proved to be efficient drugs in the prevention of ventricular arrhythmias and sudden cardiac death, especially in patients with a history of myocardial infarction or heart failure. Beta-blockers are also the mainstay of therapy in inherited arrhythmias like catecholaminergic polymorphic tachycardia syndrome or long QT syndromes. Their diversity of pharmacological properties allows the clinician to choose the appropriate agent to fit the appropriate patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kawashima T. The autonomic nervous system of the human heart with special reference to its origin, course, and peripheral distribution. Anat Embryol. 2005;209:425–38. https://doi.org/10.1007/s00429-005-0462-1.

    Article  Google Scholar 

  2. Coote JH, Chauhan RA. The sympathetic innervation of the heart: important new insights. Auton Neurosci. 2016;199:17–23. https://doi.org/10.1016/j.autneu.2016.08.014.

    Article  CAS  PubMed  Google Scholar 

  3. Franciosi S, Perry FKG, Roston TM, et al. The role of the autonomic nervous system in arrhythmias and sudden cardiac death. Auton Neurosci. 2017;205:1–11. https://doi.org/10.1016/j.autneu.2017.03.005.

    Article  PubMed  Google Scholar 

  4. Kimura K, Ieda M, Fukuda K. Development, maturation, and transdifferentiation of cardiac sympathetic nerves. Circ Res. 2012;110:325–36. https://doi.org/10.1161/CIRCRESAHA.111.257253.

    Article  CAS  PubMed  Google Scholar 

  5. Chiou CW, Eble JN, Zipes DP. Efferent vagal innervation of the canine atria and sinus and atrioventricular nodes. The third fat pad. Circulation. 1997;95:2573–84.

    Article  CAS  PubMed  Google Scholar 

  6. Vaseghi M, Shivkumar K. The role of the autonomic nervous system in sudden cardiac death. Prog Cardiovasc Dis. 2008;50:404–19. https://doi.org/10.1016/j.pcad.2008.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Armour JA. Functional anatomy of intrathoracic neurons innervating the atria and ventricles. Hear Rhythm. 2010;7:994–6. https://doi.org/10.1016/j.hrthm.2010.02.014.

    Article  Google Scholar 

  8. Hou Y, Scherlag BJ, Lin J, et al. Ganglionated plexi modulate extrinsic cardiac autonomic nerve input: effects on sinus rate, atrioventricular conduction, refractoriness, and inducibility of atrial fibrillation. J Am Coll Cardiol. 2007;50:61–8. https://doi.org/10.1016/j.jacc.2007.02.066.

    Article  PubMed  Google Scholar 

  9. Wake E, Brack K. Characterization of the intrinsic cardiac nervous system. Auton Neurosci. 2016;199:3–16. https://doi.org/10.1016/j.autneu.2016.08.006.

    Article  PubMed  Google Scholar 

  10. Bristow MR. Changes in myocardial and vascular receptors in heart failure. J Am Coll Cardiol. 1993;22:61A–71A.

    Article  CAS  PubMed  Google Scholar 

  11. Ihl-Vahl R, Eschenhagen T, Kübler W, et al. Differential regulation of mRNA specific for beta 1- and beta 2-adrenergic receptors in human failing hearts. Evaluation of the absolute cardiac mRNA levels by two independent methods. J Mol Cell Cardiol. 1996;28:1–10.

    Article  CAS  PubMed  Google Scholar 

  12. Brodde OE. Beta 1- and beta 2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. Pharmacol Rev. 1991;43:203–42.

    CAS  PubMed  Google Scholar 

  13. Schäfers RF, Poller U, Pönicke K, et al. Influence of adrenoceptor and muscarinic receptor blockade on the cardiovascular effects of exogenous noradrenaline and of endogenous noradrenaline released by infused tyramine. Naunyn Schmiedeberg’s Arch Pharmacol. 1997;355:239–49.

    Article  Google Scholar 

  14. Rubart M, Zipes DP. Science in medicine mechanisms of sudden cardiac death. J Clin Invest. 2005;115 https://doi.org/10.1172/JCI26381.

  15. Rodefeld M, Beau S, Schuessler R, et al. Beta-adrenergic and muscarinic cholinergic receptor densities in the human sinoatrial node: identification of a high beta 2-adrenergic receptor density. J Cardiovasc Electrophysiol. 1996;7:1039–49. https://doi.org/10.1111/j.1540-8167.1996.tb00479.x.

    Article  CAS  PubMed  Google Scholar 

  16. Gordan R, Gwathmey JK, Xie L-H. Autonomic and endocrine control of cardiovascular function. World J Cardiol. 2015;7:204. https://doi.org/10.4330/wjc.v7.i4.204.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brodde OE, Bruck H, Leineweber K, Seyfarth T. Presence, distribution and physiological function of adrenergic and muscarinic receptor subtypes in the human heart. Basic Res Cardiol. 2001;96:528–38.

    Article  CAS  PubMed  Google Scholar 

  18. Gardner RT, Ripplinger CM, Myles RC, Habecker BA. Molecular mechanisms of sympathetic remodeling and arrhythmias. Circ Arrhythm Electrophysiol. 2016;9:1–9. https://doi.org/10.1161/CIRCEP.115.001359.

    Article  Google Scholar 

  19. Cao JM, Fishbein MC, Han JB, et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation. 2000b;101:1960–9.

    Article  CAS  PubMed  Google Scholar 

  20. Kim DT, Luthringer DJ, Lai AC, et al. Sympathetic nerve sprouting after orthotopic heart transplantation. J Heart Lung Transplant. 2004;23:1349–58. https://doi.org/10.1016/j.healun.2003.10.005.

    Article  PubMed  Google Scholar 

  21. Li W, Knowlton D, van Winkle DM, Habecker BA. Infarction alters both the distribution and noradrenergic properties of cardiac sympathetic neurons. Am J Physiol Heart Circ Physiol. 2004;286:H2229–36. https://doi.org/10.1152/ajpheart.00768.2003.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou S, Chen LS, Miyauchi Y, et al. Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ Res. 2004;95:76–83. https://doi.org/10.1161/01.RES.0000133678.22968.e3.

    Article  CAS  PubMed  Google Scholar 

  23. Abe T, Morgan DA, Gutterman DD. Protective role of nerve growth factor against postischemic dysfunction of sympathetic coronary innervation. Circulation. 1997;95:213–20.

    Article  CAS  PubMed  Google Scholar 

  24. Hasan W, Jama A, Donohue T, et al. Sympathetic hyperinnervation and inflammatory cell NGF synthesis following myocardial infarction in rats. Brain Res. 2006;1124:142–54. https://doi.org/10.1016/j.brainres.2006.09.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meloni M, Caporali A, Graiani G, et al. Nerve growth factor promotes cardiac repair following myocardial infarction. Circ Res. 2010;106:1275–84. https://doi.org/10.1161/CIRCRESAHA.109.210088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ieda M, Kanazawa H, Kimura K, et al. Sema3a maintains normal heart rhythm through sympathetic innervation patterning. Nat Med. 2007;13:604–12. https://doi.org/10.1038/nm1570.

    Article  CAS  PubMed  Google Scholar 

  27. Chen R-H, Li Y-G, Jiao K-L, et al. Overexpression of sema3a in myocardial infarction border zone decreases vulnerability of ventricular tachycardia post-myocardial infarction in rats. J Cell Mol Med. 2013;17:608–16. https://doi.org/10.1111/jcmm.12035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jacobson AF, Senior R, Cerqueira MD, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. J Am Coll Cardiol. 2010;55:2212–21. https://doi.org/10.1016/j.jacc.2010.01.014.

    Article  PubMed  Google Scholar 

  29. Stanton MS, Tuli MM, Radtke NL, et al. Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123-metaiodobenzylguanidine. J Am Coll Cardiol. 1989;14:1519–26.

    Article  CAS  PubMed  Google Scholar 

  30. Kohn J, Aloyz RS, Toma JG, et al. Functionally antagonistic interactions between the TrkA and p75 neurotrophin receptors regulate sympathetic neuron growth and target innervation. J Neurosci. 1999;19:5393–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gardner RT, Habecker BA. Infarct-derived chondroitin sulfate proteoglycans prevent sympathetic reinnervation after cardiac ischemia-reperfusion injury. J Neurosci. 2013;33:7175–83. https://doi.org/10.1523/JNEUROSCI.5866-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Boogers MJ, Borleffs CJW, Henneman MM, et al. Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol. 2010;55:2769–77. https://doi.org/10.1016/j.jacc.2009.12.066.

    Article  PubMed  Google Scholar 

  33. Fallavollita JA, Heavey BM, Luisi AJ, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol. 2014;63:141–9. https://doi.org/10.1016/j.jacc.2013.07.096.

    Article  PubMed  Google Scholar 

  34. Cuculi F, Herring N, de Caterina AR, et al. Relationship of plasma neuropeptide Y with angiographic, electrocardiographic and coronary physiology indices of reperfusion during ST elevation myocardial infarction. Heart. 2013;99:1198–203. https://doi.org/10.1136/heartjnl-2012-303443.

    Article  CAS  PubMed  Google Scholar 

  35. Kammerling JJ, Green FJ, Watanabe AM, et al. Denervation supersensitivity of refractoriness in noninfarcted areas apical to transmural myocardial infarction. Circulation. 1987;76:383–93.

    Article  CAS  PubMed  Google Scholar 

  36. Warner MR, Wisler PL, Hodges TD, et al. Mechanisms of denervation supersensitivity in regionally denervated canine hearts. Am J Physiol Circ Physiol. 1993;264:H815–20. https://doi.org/10.1152/ajpheart.1993.264.3.H815.

    Article  CAS  Google Scholar 

  37. Inoue H, Zipes DP. Results of sympathetic denervation in the canine heart: supersensitivity that may be arrhythmogenic. Circulation. 1987;75:877–87.

    Article  CAS  PubMed  Google Scholar 

  38. Coumel P, Attuel P, Lavallée J, et al. The atrial arrhythmia syndrome of vagal origin. Arch Mal Coeur Vaiss. 1978;71:645–56.

    CAS  PubMed  Google Scholar 

  39. Chen P-S, Tan AY. Autonomic nerve activity and atrial fibrillation. Heart Rhythm. 2007;4:S61–4. https://doi.org/10.1016/j.hrthm.2006.12.006.

    Article  PubMed  Google Scholar 

  40. Coumel P. Autonomic influences in atrial tachyarrhythmias. J Cardiovasc Electrophysiol. 1996;7:999–1007.

    Article  CAS  PubMed  Google Scholar 

  41. de Vos CB, Nieuwlaat R, Crijns HJGM, et al. Autonomic trigger patterns and anti-arrhythmic treatment of paroxysmal atrial fibrillation: data from the Euro Heart Survey. Eur Heart J. 2008;29:632–9. https://doi.org/10.1093/eurheartj/ehn025.

    Article  PubMed  Google Scholar 

  42. Dimmer C, Tavernier R, Gjorgov N, et al. Variations of autonomic tone preceding onset of atrial fibrillation after coronary artery bypass grafting. Am J Cardiol. 1998;82:22–5.

    Article  CAS  PubMed  Google Scholar 

  43. Huang JL, Wen ZC, Lee WL, et al. Changes of autonomic tone before the onset of paroxysmal atrial fibrillation. Int J Cardiol. 1998;66:275–83.

    Article  CAS  PubMed  Google Scholar 

  44. Kapa S, Venkatachalam KL, Asirvatham SJ. The autonomic nervous system in cardiac electrophysiology. Cardiol Rev. 2010;18:275–84. https://doi.org/10.1097/CRD.0b013e3181ebb152.

    Article  PubMed  Google Scholar 

  45. Verrier RL, Josephson ME. Impact of sleep on arrhythmogenesis. Circ Arrhythm Electrophysiol. 2009;2:450–9. https://doi.org/10.1161/CIRCEP.109.867028.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sharifov OF, Fedorov VV, Beloshapko GG, et al. Roles of adrenergic and cholinergic stimulation in spontaneous atrial fibrillation in dogs. J Am Coll Cardiol. 2004;43:483–90. https://doi.org/10.1016/j.jacc.2003.09.030.

    Article  CAS  PubMed  Google Scholar 

  47. Ogawa M, Zhou S, Tan AY, et al. Left stellate ganglion and vagal nerve activity and cardiac arrhythmias in ambulatory dogs with pacing-induced congestive heart failure. J Am Coll Cardiol. 2007;50:335–43. https://doi.org/10.1016/j.jacc.2007.03.045.

    Article  PubMed  Google Scholar 

  48. Tan AY, Zhou S, Ogawa M, et al. Neural mechanisms of paroxysmal atrial fibrillation and paroxysmal atrial tachycardia in ambulatory canines. Circulation. 2008;118:916–25. https://doi.org/10.1161/CIRCULATIONAHA.108.776203.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Shen MJ, Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res. 2014;114:1004–21. https://doi.org/10.1161/CIRCRESAHA.113.302549.

    Article  CAS  PubMed  Google Scholar 

  50. Cao JM, Chen LS, KenKnight BH, et al. Nerve sprouting and sudden cardiac death. Circ Res. 2000a;86:816–21.

    Article  CAS  PubMed  Google Scholar 

  51. Chen PS, Chen LS, Cao JM, et al. Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res. 2001;50:409–16.

    Article  CAS  PubMed  Google Scholar 

  52. Schwartz PJ. The autonomic nervous system and sudden death. Eur Heart J. 1998;19(Suppl F):F72–80.

    PubMed  Google Scholar 

  53. Zipes DP, Rubart M. Neural modulation of cardiac arrhythmias and sudden cardiac death. Heart Rhythm. 2006;3:108–13. https://doi.org/10.1016/j.hrthm.2005.09.021.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Janse MJ, Schwartz PJ, Wilms-Schopman F, et al. Effects of unilateral stellate ganglion stimulation and ablation on electrophysiologic changes induced by acute myocardial ischemia in dogs. Circulation. 1985;72:585–95.

    Article  CAS  PubMed  Google Scholar 

  55. Jiang H, Hu X, Lu Z, et al. Effects of sympathetic nerve stimulation on ischemia-induced ventricular arrhythmias by modulating Connexin43 in rats. Arch Med Res. 2008;39:647–54. https://doi.org/10.1016/j.arcmed.2008.07.005.

    Article  CAS  PubMed  Google Scholar 

  56. Opthof T, Misier AR, Coronel R, et al. Dispersion of refractoriness in canine ventricular myocardium. Effects of sympathetic stimulation. Circ Res. 1991;68:1204–15.

    Article  CAS  PubMed  Google Scholar 

  57. Albert CM, Mittleman MA, Chae CU, et al. Triggering of sudden death from cardiac causes by vigorous exertion. N Engl J Med. 2000;343:1355–61. https://doi.org/10.1056/NEJM200011093431902.

    Article  CAS  PubMed  Google Scholar 

  58. Billman GE. Heart rate response to onset of exercise: evidence for enhanced cardiac sympathetic activity in animals susceptible to ventricular fibrillation. Am J Physiol Circ Physiol. 2006;291:H429–35. https://doi.org/10.1152/ajpheart.00020.2006.

    Article  CAS  Google Scholar 

  59. Corrado D, Basso C, Rizzoli G, et al. Does sports activity enhance the risk of sudden death in adolescents and young adults? J Am Coll Cardiol. 2003;42:1959–63.

    Article  PubMed  Google Scholar 

  60. Verrier RL, Lown B. Behavioral stress and cardiac arrhythmias. Annu Rev Physiol. 1984;46:155–76. https://doi.org/10.1146/annurev.ph.46.030184.001103.

    Article  CAS  PubMed  Google Scholar 

  61. Ziegelstein RC. Acute emotional stress and cardiac arrhythmias. JAMA. 2007;298:324. https://doi.org/10.1001/jama.298.3.324.

    Article  CAS  PubMed  Google Scholar 

  62. Ng GA, Mantravadi R, Walker WH, et al. Sympathetic nerve stimulation produces spatial heterogeneities of action potential restitution. Heart Rhythm. 2009;6:696–706. https://doi.org/10.1016/j.hrthm.2009.01.035.

    Article  PubMed  Google Scholar 

  63. Swissa M, Zhou S, Gonzalez-Gomez I, et al. Long-term subthreshold electrical stimulation of the left stellate ganglion and a canine model of sudden cardiac death. J Am Coll Cardiol. 2004;43:858–64. https://doi.org/10.1016/j.jacc.2003.07.053.

    Article  PubMed  Google Scholar 

  64. Shusterman V, Aysin B, Gottipaty V, et al. Autonomic nervous system activity and the spontaneous initiation of ventricular tachycardia. ESVEM investigators. Electrophysiologic study versus electrocardiographic monitoring trial. J Am Coll Cardiol. 1998;32:1891–9.

    Article  CAS  PubMed  Google Scholar 

  65. Zhou S, Jung B-C, Tan AY, et al. Spontaneous stellate ganglion nerve activity and ventricular arrhythmia in a canine model of sudden death. Heart Rhythm. 2008;5:131–9. https://doi.org/10.1016/j.hrthm.2007.09.007.

    Article  PubMed  Google Scholar 

  66. Frishman WH. Beta-adrenergic blockers: a 50-year historical perspective. Am J Ther. 2008;15:565–76. https://doi.org/10.1097/MJT.0b013e318188bdca.

    Article  PubMed  Google Scholar 

  67. Westfall T, Macarthur H, Westfall D. Adrenergic agonists and antagonists. In: Brunton L, Hilal-Dandan R, Knollmann B, editors. Goodman & Gilman’s: the pharmacological basis of therapeutics. 13th ed. New York: McGraw-Hill; 2017. p. 1423.

    Google Scholar 

  68. Egan BM, Basile J, Chilton RJ, Cohen JD. Cardioprotection: the role of beta-blocker therapy. J Clin Hypertens (Greenwich). 2005;7:409–16.

    Article  CAS  Google Scholar 

  69. Pedersen ME, Cockcroft JR. The vasodilatory beta-blockers. Curr Hypertens Rep. 2007;9:269–77.

    Article  CAS  PubMed  Google Scholar 

  70. Kozlovski VI, Lomnicka M, Chlopicki S. Nebivovol and carvedilol induce NO-dependent coronary vasodilatation that is unlikely to be mediated by extracellular ATP in the isolated Guinea pig heart. Pharmacol Rep. 2006;58(Suppl):103–10.

    PubMed  Google Scholar 

  71. Dandona P, Ghanim H, Brooks DP. Antioxidant activity of carvedilol in cardiovascular disease. J Hypertens. 2007;25:731–41. https://doi.org/10.1097/HJH.0b013e3280127948.

    Article  CAS  PubMed  Google Scholar 

  72. Toda N. Vasodilating beta-adrenoceptor blockers as cardiovascular therapeutics. Pharmacol Ther. 2003;100:215–34.

    Article  CAS  PubMed  Google Scholar 

  73. Opie L. Drugs for the heart. Amsterdam: Elsevier; 2013.

    Google Scholar 

  74. Zicha S, Tsuji Y, Shiroshita-Takeshita A, Nattel S. Beta-blockers as antiarrhythmic agents. Handb Exp Pharmacol. 2006:235–66.

    Google Scholar 

  75. Han W, Wang Z, Nattel S. Slow delayed rectifier current and repolarization in canine cardiac Purkinje cells. Am J Physiol Circ Physiol. 2001;280:H1075–80. https://doi.org/10.1152/ajpheart.2001.280.3.H1075.

    Article  CAS  Google Scholar 

  76. Li G-R, Lau C-P, Ducharme A, et al. Transmural action potential and ionic current remodeling in ventricles of failing canine hearts. Am J Physiol Circ Physiol. 2002;283:H1031–41. https://doi.org/10.1152/ajpheart.00105.2002.

    Article  CAS  Google Scholar 

  77. Tsuji Y, Opthof T, Kamiya K, et al. Pacing-induced heart failure causes a reduction of delayed rectifier potassium currents along with decreases in calcium and transient outward currents in rabbit ventricle. Cardiovasc Res. 2000;48:300–9.

    Article  CAS  PubMed  Google Scholar 

  78. Dan G-A, Martinez-Rubio A, Agewall S, et al. Antiarrhythmic drugs–clinical use and clinical decision making: a consensus document from the European Heart Rhythm Association (EHRA) and European Society of Cardiology (ESC) Working Group on Cardiovascular Pharmacology, endorsed by the Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS) and International Society of Cardiovascular Pharmacotherapy (ISCP). Europace. 2018;20:731–732an. https://doi.org/10.1093/europace/eux373.

    Article  PubMed  Google Scholar 

  79. Li GR, Feng J, Wang Z, et al. Adrenergic modulation of ultrarapid delayed rectifier K+ current in human atrial myocytes. Circ Res. 1996;78:903–15.

    Article  CAS  PubMed  Google Scholar 

  80. Knobloch K, Brendel J, Rosenstein B, et al. Atrial-selective antiarrhythmic actions of novel Ikur vs. Ikr, Iks, and IKAch class Ic drugs and beta blockers in pigs. Med Sci Monit. 2004;10:BR221–8.

    CAS  PubMed  Google Scholar 

  81. Koumi S, Backer CL, Arentzen CE, Sato R. Beta-adrenergic modulation of the inwardly rectifying potassium channel in isolated human ventricular myocytes. Alteration in channel response to beta-adrenergic stimulation in failing human hearts. J Clin Invest. 1995;96:2870–81. https://doi.org/10.1172/JCI118358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tomaselli GF, Marbán E. Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc Res. 1999;42:270–83.

    Article  CAS  PubMed  Google Scholar 

  83. Tristani-Firouzi M, Jensen JL, Donaldson MR, et al. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest. 2002;110:381–8. https://doi.org/10.1172/JCI15183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dobrev D, Wettwer E, Kortner A, et al. Human inward rectifier potassium channels in chronic and postoperative atrial fibrillation. Cardiovasc Res. 2002;54:397–404.

    Article  CAS  PubMed  Google Scholar 

  85. Workman AJ, Kane KA, Rankin AC. The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovasc Res. 2001;52:226–35.

    Article  CAS  PubMed  Google Scholar 

  86. Kharche SR, Stary T, Colman MA, et al. Effects of human atrial ionic remodelling by β-blocker therapy on mechanisms of atrial fibrillation: a computer simulation. Europace. 2014;16:1524–33. https://doi.org/10.1093/europace/euu084.

    Article  PubMed  Google Scholar 

  87. Baruscotti M, Bucchi A, DiFrancesco D. Physiology and pharmacology of the cardiac pacemaker (“funny”) current. Pharmacol Ther. 2005;107:59–79. https://doi.org/10.1016/j.pharmthera.2005.01.005.

    Article  CAS  PubMed  Google Scholar 

  88. Pogwizd SM, Bers DM. Cellular basis of triggered arrhythmias in heart failure. Trends Cardiovasc Med. 2004;14:61–6. https://doi.org/10.1016/j.tcm.2003.12.002.

    Article  CAS  PubMed  Google Scholar 

  89. del Monte F, Lebeche D, Guerrero JL, et al. Abrogation of ventricular arrhythmias in a model of ischemia and reperfusion by targeting myocardial calcium cycling. Proc Natl Acad Sci. 2004;101:5622–7. https://doi.org/10.1073/pnas.0305778101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hume JR, Duan D, Collier ML, et al. Anion transport in heart. Physiol Rev. 2000;80:31–81. https://doi.org/10.1152/physrev.2000.80.1.31.

    Article  CAS  PubMed  Google Scholar 

  91. Nagel G, Hwang T-C, Nastiuk KL, et al. The protein kinase A-regulated cardiac CI− channel resembles the cystic fibrosis transmembrane conductance regulator. Nature. 1992;360:81–4. https://doi.org/10.1038/360081a0.

    Article  CAS  PubMed  Google Scholar 

  92. Mulvaney AW, Spencer CI, Culliford S, et al. Cardiac chloride channels: physiology, pharmacology and approaches for identifying novel modulators of activity. Drug Discov Today. 2000;5:492–505. https://doi.org/10.1016/S1359-6446(00)01561-0.

    Article  CAS  PubMed  Google Scholar 

  93. Tamargo J, Delpón E. Pharmacologic bases of antiarrhythmic therapy. In: Zipes D, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. 6th ed. Amsterdam: Saunders Elsevier; 2014. p. 533.

    Google Scholar 

  94. Brodde O-E, Bruck H, Leineweber K. Cardiac adrenoceptors: physiological and pathophysiological relevance. J Pharmacol Sci. 2006;100:323–37.

    Article  CAS  PubMed  Google Scholar 

  95. Penela P, Murga C, Ribas C, et al. Mechanisms of regulation of G protein-coupled receptor kinases (GRKs) and cardiovascular disease. Cardiovasc Res. 2006;69:46–56. https://doi.org/10.1016/j.cardiores.2005.09.011.

    Article  CAS  PubMed  Google Scholar 

  96. Reiken S, Wehrens XHT, Vest JA, et al. Beta-blockers restore calcium release channel function and improve cardiac muscle performance in human heart failure. Circulation. 2003;107:2459–66. https://doi.org/10.1161/01.CIR.0000068316.53218.49.

    Article  CAS  PubMed  Google Scholar 

  97. Page RL, Joglar JA, Caldwell MA, et al. 2015 ACC/AHA/HRS guideline for the management of adult patients with supraventricular tachycardia. Circulation. 2016;133 https://doi.org/10.1161/CIR.0000000000000311.

  98. Priori SG, Blomström-Lundqvist C, Mazzanti A, et al. 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J. 2015;36:2793–867. https://doi.org/10.1093/eurheartj/ehv316.

    Article  PubMed  Google Scholar 

  99. Blomström-Lundqvist C, Scheinman MM, Aliot EM, et al. ACC/AHA/ESC guidelines for the management of patients with supraventricular arrhythmias--executive summary. A report of the American college of cardiology/American heart association task force on practice guidelines and the European society of cardiology. J Am Coll Cardiol. 2003;42:1493–531.

    Article  PubMed  Google Scholar 

  100. Olshansky B, Sullivan RM. Inappropriate sinus tachycardia. J Am Coll Cardiol. 2013;61:793–801. https://doi.org/10.1016/j.jacc.2012.07.074.

    Article  PubMed  Google Scholar 

  101. Shirey-Rice JK, Klar R, Fentress HM, et al. Norepinephrine transporter variant A457P knock-in mice display key features of human postural orthostatic tachycardia syndrome. Dis Model Mech. 2013;6:1001–11. https://doi.org/10.1242/dmm.012203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fedorowski A, Li H, Yu X, et al. Antiadrenergic autoimmunity in postural tachycardia syndrome. EP Eur. 2017;19:1211–9. https://doi.org/10.1093/europace/euw154.

    Article  Google Scholar 

  103. Li H, Yu X, Liles C, et al. Autoimmune basis for postural tachycardia syndrome. J Am Heart Assoc. 2014;3:e000755. https://doi.org/10.1161/JAHA.113.000755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Arnold AC, Okamoto LE, Diedrich A, et al. Low-dose propranolol and exercise capacity in postural tachycardia syndrome: a randomized study. Neurology. 2013;80:1927–33. https://doi.org/10.1212/WNL.0b013e318293e310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sidhu B, Obiechina N, Rattu N, Mitra S. Postural orthostatic tachycardia syndrome (POTS). Case Rep. 2013;2013:bcr2013201244. https://doi.org/10.1136/bcr-2013-201244.

    Article  Google Scholar 

  106. Grubb BP. Postural tachycardia syndrome. Circulation. 2008;117:2814–7. https://doi.org/10.1161/CIRCULATIONAHA.107.761643.

    Article  PubMed  Google Scholar 

  107. Saoudi N, Cosío F, Waldo A, et al. A classification of atrial flutter and regular atrial tachycardia according to electrophysiological mechanisms and anatomical bases; a statement from a Joint Expert Group from The Working Group of Arrhythmias of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J. 2001;22:1162–82. https://doi.org/10.1053/euhj.2001.2658.

    Article  CAS  PubMed  Google Scholar 

  108. Porter MJ, Morton JB, Denman R, et al. Influence of age and gender on the mechanism of supraventricular tachycardia. Heart Rhythm. 2004;1:393–6. https://doi.org/10.1016/j.hrthm.2004.05.007.

    Article  PubMed  Google Scholar 

  109. Poutiainen AM, Koistinen MJ, Airaksinen KE, et al. Prevalence and natural course of ectopic atrial tachycardia. Eur Heart J. 1999;20:694–700.

    Article  CAS  PubMed  Google Scholar 

  110. Ko JK, Deal BJ, Strasburger JF, Benson DW. Supraventricular tachycardia mechanisms and their age distribution in pediatric patients. Am J Cardiol. 1992;69:1028–32.

    Article  CAS  PubMed  Google Scholar 

  111. Wren C. Incessant tachycardias. Eur Heart J. 1998;19(Suppl E):E32-6–54-9.

    Google Scholar 

  112. López-Sendón J, Swedberg K, McMurray J, et al. Expert consensus document on beta-adrenergic receptor blockers. Eur Heart J. 2004;25:1341–62. https://doi.org/10.1016/j.ehj.2004.06.002.

    Article  PubMed  Google Scholar 

  113. Arsura EL, Solar M, Lefkin AS, et al. Metoprolol in the treatment of multifocal atrial tachycardia. Crit Care Med. 1987;15:591–4.

    Article  CAS  PubMed  Google Scholar 

  114. Hazard PB, Burnett CR. Treatment of multifocal atrial tachycardia with metoprolol. Crit Care Med. 1987;15:20–5.

    Article  CAS  PubMed  Google Scholar 

  115. Schwartz M, Rodman D, Lowenstein SR. Recognition and treatment of multifocal atrial tachycardia: a critical review. J Emerg Med. 1994;12:353–60.

    Article  CAS  PubMed  Google Scholar 

  116. Hill GA, Owens SD. Esmolol in the treatment of multifocal atrial tachycardia. Chest. 1992;101:1726–8. https://doi.org/10.1378/chest.101.6.1726.

    Article  CAS  PubMed  Google Scholar 

  117. Brubaker S, Long B, Koyfman A. Alternative treatment options for atrioventricular-nodal-reentry tachycardia: an emergency medicine review. J Emerg Med. 2018;54:198–206. https://doi.org/10.1016/j.jemermed.2017.10.003.

    Article  PubMed  Google Scholar 

  118. Sung RJ, Blanski L, Kirshenbaum J, et al. Clinical experience with esmolol, a short-acting beta-adrenergic blocker in cardiac arrhythmias and myocardial ischemia. J Clin Pharmacol. 1986;26:A15–26. https://doi.org/10.1002/j.1552-4604.1986.tb02983.x.

    Article  CAS  PubMed  Google Scholar 

  119. Gupta A, Naik A, Vora A, Lokhandwala Y. Comparison of efficacy of intravenous diltiazem and esmolol in terminating supraventricular tachycardia. J Assoc Physicians India. 1999;47:969–72.

    CAS  PubMed  Google Scholar 

  120. Issa ZF, John MM, Douglas ZP. Clinical arrhythmology and electrophysiology: a companion to braunwalds heart disease. 2nd ed. Amsterdam: Elsevier Saunders; 2012.

    Google Scholar 

  121. Granada J, Uribe W, Chyou P-H, et al. Incidence and predictors of atrial flutter in the general population. J Am Coll Cardiol. 2000;36:2242–6. https://doi.org/10.1016/S0735-1097(00)00982-7.

    Article  CAS  PubMed  Google Scholar 

  122. Platia EV, Michelson EL, Porterfield JK, Das G. Esmolol versus verapamil in the acute treatment of atrial fibrillation or atrial flutter. Am J Cardiol. 1989;63:925–9.

    Article  CAS  PubMed  Google Scholar 

  123. Schwartz M, Michelson EL, Sawin HS, MacVaugh H. Esmolol: safety and efficacy in postoperative cardiothoracic patients with supraventricular tachyarrhythmias. Chest. 1988;93:705–11.

    Article  CAS  PubMed  Google Scholar 

  124. January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation. 2014;130:2071–104. https://doi.org/10.1161/CIR.0000000000000040.

    Article  PubMed  Google Scholar 

  125. Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37:2893–962. https://doi.org/10.1093/eurheartj/ehw210.

    Article  PubMed  Google Scholar 

  126. Anderson S, Blanski L, Byrd RC, et al. Comparison of the efficacy and safety of esmolol, a short-acting beta blocker, with placebo in the treatment of supraventricular tachyarrhythmias. The Esmolol vs Placebo Multicenter Study Group. Am Heart J. 1986;111:42–8.

    Article  CAS  PubMed  Google Scholar 

  127. Plewan A, Lehmann G, Ndrepepa G, et al. Maintenance of sinus rhythm after electrical cardioversion of persistent atrial fibrillation; sotalol vs bisoprolol. Eur Heart J. 2001;22:1504–10. https://doi.org/10.1053/euhj.2000.2546.

    Article  CAS  PubMed  Google Scholar 

  128. Katritsis DG, Panagiotakos DB, Karvouni E, et al. Comparison of effectiveness of carvedilol versus bisoprolol for maintenance of sinus rhythm after cardioversion of persistent atrial fibrillation. Am J Cardiol. 2003;92:1116–9.

    Article  CAS  PubMed  Google Scholar 

  129. Lafuente-Lafuente C, Valembois L, Bergmann J-F, Belmin J. Antiarrhythmics for maintaining sinus rhythm after cardioversion of atrial fibrillation. Cochrane Database Syst Rev. 2015;3:CD005049. https://doi.org/10.1002/14651858.CD005049.pub4.

    Article  Google Scholar 

  130. Dagres N, Lewalter T, Lip GYH, et al. Current practice of antiarrhythmic drug therapy for prevention of atrial fibrillation in Europe: the European Heart Rhythm Association survey. Europace. 2013;15:478–81. https://doi.org/10.1093/europace/eut063.

    Article  PubMed  Google Scholar 

  131. Brieger D, Amerena J, Attia J, et al. National Heart Foundation of Australia and the Cardiac Society of Australia and New Zealand: Australian clinical guidelines for the diagnosis and management of atrial fibrillation 2018. Heart Lung Circ. 2018;27:1209–66. https://doi.org/10.1016/j.hlc.2018.06.1043.

    Article  PubMed  Google Scholar 

  132. Devereaux P, Yang H, Yusuf S, et al. Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial. Lancet. 2008;371:1839–47. https://doi.org/10.1016/S0140-6736(08)60601-7.

    Article  CAS  PubMed  Google Scholar 

  133. Fleisher LA, Fleischmann KE, Auerbach AD, et al. 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery. Circulation. 2014;130:2215–45. https://doi.org/10.1161/CIR.0000000000000106.

    Article  PubMed  Google Scholar 

  134. Danelich IM, Lose JM, Wright SS, et al. Practical management of postoperative atrial fibrillation after noncardiac surgery. J Am Coll Surg. 2014;219:831–41. https://doi.org/10.1016/j.jamcollsurg.2014.02.038.

    Article  PubMed  Google Scholar 

  135. Bessissow A, Khan J, Devereaux PJ, et al. Postoperative atrial fibrillation in non-cardiac and cardiac surgery: an overview. J Thromb Haemost. 2015;13:S304–12. https://doi.org/10.1111/jth.12974.

    Article  PubMed  Google Scholar 

  136. Arsenault KA, Yusuf AM, Crystal E, et al. Interventions for preventing post-operative atrial fibrillation in patients undergoing heart surgery. Cochrane Database Syst Rev. 2013; https://doi.org/10.1002/14651858.CD003611.pub3.

  137. Burgess DC, Kilborn MJ, Keech AC. Interventions for prevention of post-operative atrial fibrillation and its complications after cardiac surgery: a meta-analysis. Eur Heart J. 2006;27:2846–57. https://doi.org/10.1093/eurheartj/ehl272.

    Article  PubMed  Google Scholar 

  138. Mathew JP, Fontes ML, Tudor IC, et al. A multicenter risk index for atrial fibrillation after cardiac surgery. JAMA. 2004;291:1720–9. https://doi.org/10.1001/jama.291.14.1720.

    Article  CAS  PubMed  Google Scholar 

  139. Blessberger H, Kammler J, Domanovits H, et al. Perioperative beta-blockers for preventing surgery-related mortality and morbidity. Cochrane Database Syst Rev. 2018; https://doi.org/10.1002/14651858.CD004476.pub3.

  140. Rienstra M, Damman K, Mulder BA, et al. Beta-blockers and outcome in heart failure and atrial fibrillation. A meta-analysis. JACC Heart Fail. 2013;1:21–8. https://doi.org/10.1016/j.jchf.2012.09.002.

    Article  PubMed  Google Scholar 

  141. Kotecha D, Flather MD, Altman DG, et al. Heart rate and rhythm and the benefit of beta-blockers in patients with heart failure. J Am Coll Cardiol. 2017;69:2885–96. https://doi.org/10.1016/j.jacc.2017.04.001.

    Article  CAS  PubMed  Google Scholar 

  142. Cadrin-Tourigny J, Shohoudi A, Roy D, et al. Decreased mortality with beta-blockers in patients with heart failure and coexisting atrial fibrillation. JACC Heart Fail. 2017;5:99–106. https://doi.org/10.1016/j.jchf.2016.10.015.

    Article  PubMed  Google Scholar 

  143. Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Circulation. 2018;138:e272–391. https://doi.org/10.1161/CIR.0000000000000549.

    Article  PubMed  Google Scholar 

  144. Ling Z, Liu Z, Su L, et al. Radiofrequency ablation versus antiarrhythmic medication for treatment of ventricular premature beats from the right ventricular outflow tract: prospective randomized study. Circ Arrhythm Electrophysiol. 2014;7:237–43. https://doi.org/10.1161/CIRCEP.113.000805.

    Article  CAS  PubMed  Google Scholar 

  145. Piccini JP, Hranitzky PM, Kilaru R, et al. Relation of mortality to failure to prescribe beta blockers acutely in patients with sustained ventricular tachycardia and ventricular fibrillation following acute myocardial infarction (from the VALsartan in acute myocardial iNfarcTion trial [VALIANT] Registry). Am J Cardiol. 2008;102:1427–32. https://doi.org/10.1016/j.amjcard.2008.07.033.

    Article  PubMed  Google Scholar 

  146. Teo KK, Yusuf S, Furberg CD. Effects of prophylactic antiarrhythmic drug therapy in acute myocardial infarction. An overview of results from randomized controlled trials. JAMA. 1993;270:1589–95.

    Article  CAS  PubMed  Google Scholar 

  147. Nademanee K, Taylor R, Bailey WE, et al. Treating electrical storm: sympathetic blockade versus advanced cardiac life support-guided therapy. Circulation. 2000;102:742–7.

    Article  CAS  PubMed  Google Scholar 

  148. Kettering K, Mewis C, Dornberger V, et al. Efficacy of metoprolol and sotalol in the prevention of recurrences of sustained ventricular tachyarrhythmias in patients with an implantable cardioverter defibrillator. Pacing Clin Electrophysiol. 2002;25:1571–6. https://doi.org/10.1046/j.1460-9592.2002.01571.x.

    Article  PubMed  Google Scholar 

  149. Brodine WN, Tung RT, Lee JK, et al. Effects of beta-blockers on implantable cardioverter defibrillator therapy and survival in the patients with ischemic cardiomyopathy (from the Multicenter Automatic Defibrillator Implantation Trial-II). Am J Cardiol. 2005;96:691–5. https://doi.org/10.1016/j.amjcard.2005.04.046.

    Article  CAS  PubMed  Google Scholar 

  150. Freemantle N, Cleland J, Young P, et al. Beta blockade after myocardial infarction: systematic review and meta regression analysis. BMJ. 1999;318:1730–7. https://doi.org/10.1136/bmj.318.7200.1730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Boutitie F, Boissel JP, Connolly SJ, et al. Amiodarone interaction with beta-blockers: analysis of the merged EMIAT (European Myocardial Infarct Amiodarone Trial) and CAMIAT (Canadian Amiodarone Myocardial Infarction Trial) databases. The EMIAT and CAMIAT investigators. Circulation. 1999;99:2268–75.

    Article  CAS  PubMed  Google Scholar 

  152. Cleland JGF, Bunting KV, Flather MD, et al. Beta-blockers for heart failure with reduced, mid-range, and preserved ejection fraction: an individual patient-level analysis of double-blind randomized trials. Eur Heart J. 2018;39:26–35. https://doi.org/10.1093/eurheartj/ehx564.

    Article  CAS  PubMed  Google Scholar 

  153. Packer M, Bristow MR, Cohn JN, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N Engl J Med. 1996;334:1349–55. https://doi.org/10.1056/NEJM199605233342101.

    Article  CAS  PubMed  Google Scholar 

  154. MERIT-HF Study Group. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL randomised intervention trial in congestive heart failure (MERIT-HF). Lancet. 1999;353:2001–7.

    Article  Google Scholar 

  155. CIBIS-II Investigators and Committees. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet. 1999;353:9–13.

    Article  Google Scholar 

  156. Cleophas TJ, Zwinderman AH. Beta-blockers and heart failure: meta-analysis of mortality trials. Int J Clin Pharmacol Ther. 2001;39:383–8.

    Article  CAS  PubMed  Google Scholar 

  157. Al-Gobari M, Khatib C El, Pillon F, Gueyffier F (2013) Beta-blockers for the prevention of sudden cardiac death in heart failure patients: a meta-analysis of randomized controlled trials. BMC Cardiovasc Disord 13:52. doi: https://doi.org/10.1186/1471-2261-13-52

  158. Fauchier L, Pierre B, de Labriolle A, Babuty D (2007) Comparison of the beneficial effect of beta-blockers on mortality in patients with ischaemic or non-ischaemic systolic heart failure: a meta-analysis of randomised controlled trials. Eur J Heart Fail 9:1136–1139. doi: https://doi.org/10.1016/j.ejheart.2007.09.003.

  159. Remme WJ, Cleland JG, Erhardt L, et al. Effect of carvedilol and metoprolol on the mode of death in patients with heart failure. Eur J Heart Fail. 2007;9:1128–35. https://doi.org/10.1016/j.ejheart.2007.07.014.

    Article  CAS  PubMed  Google Scholar 

  160. Corrado D, Wichter T, Link MS, et al. Treatment of arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation. 2015;132:441–53. https://doi.org/10.1161/CIRCULATIONAHA.115.017944.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Marcus GM, Glidden DV, Polonsky B, et al. Efficacy of antiarrhythmic drugs in arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol. 2009;54:609–15. https://doi.org/10.1016/j.jacc.2009.04.052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ammirati E, Contri R, Coppini R, et al. Pharmacological treatment of hypertrophic cardiomyopathy: current practice and novel perspectives. Eur J Heart Fail. 2016;18:1106–18. https://doi.org/10.1002/ejhf.541.

    Article  PubMed  Google Scholar 

  163. Elliott PM, Anastasakis A, Borger MA, et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35:2733–79. https://doi.org/10.1093/eurheartj/ehu284.

    Article  PubMed  Google Scholar 

  164. Priori SG, Wilde AA, Horie M, et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Heart Rhythm. 2013;10:1932–63. https://doi.org/10.1016/j.hrthm.2013.05.014.

    Article  PubMed  Google Scholar 

  165. Schwartz PJ, Priori SG, Spazzolini C, et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation. 2001;103:89–95.

    Article  CAS  PubMed  Google Scholar 

  166. Rohatgi RK, Sugrue A, Bos JM, et al. Contemporary outcomes in patients with long QT syndrome. J Am Coll Cardiol. 2017;70:453–62. https://doi.org/10.1016/j.jacc.2017.05.046.

    Article  PubMed  Google Scholar 

  167. Abu-Zeitone A, Peterson DR, Polonsky B, et al. Efficacy of different beta-blockers in the treatment of long QT syndrome. J Am Coll Cardiol. 2014;64:1352–8. https://doi.org/10.1016/j.jacc.2014.05.068.

    Article  CAS  PubMed  Google Scholar 

  168. Chockalingam P, Crotti L, Girardengo G, et al. Not all beta-blockers are equal in the management of long QT syndrome types 1 and 2. J Am Coll Cardiol. 2012;60:2092–9. https://doi.org/10.1016/j.jacc.2012.07.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Roston TM, Yuchi Z, Kannankeril PJ, et al. The clinical and genetic spectrum of catecholaminergic polymorphic ventricular tachycardia: findings from an international multicentre registry. Europace. 2018;20:541–7. https://doi.org/10.1093/europace/euw389.

    Article  PubMed  Google Scholar 

  170. van der Werf C, Zwinderman AH, Wilde AAM. Therapeutic approach for patients with catecholaminergic polymorphic ventricular tachycardia: state of the art and future developments. Europace. 2012;14:175–83. https://doi.org/10.1093/europace/eur277.

    Article  PubMed  Google Scholar 

  171. Hayashi M, Denjoy I, Extramiana F, et al. Incidence and risk factors of arrhythmic events in catecholaminergic polymorphic ventricular tachycardia. Circulation. 2009;119:2426–34. https://doi.org/10.1161/CIRCULATIONAHA.108.829267.

    Article  CAS  PubMed  Google Scholar 

  172. Leren IS, Saberniak J, Majid E, et al. Nadolol decreases the incidence and severity of ventricular arrhythmias during exercise stress testing compared with β1-selective β-blockers in patients with catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2016;13:433–40. https://doi.org/10.1016/j.hrthm.2015.09.029.

    Article  PubMed  Google Scholar 

  173. Fonarow GC, Abraham WT, Albert NM, et al. Influence of beta-blocker continuation or withdrawal on outcomes in patients hospitalized with heart failure. J Am Coll Cardiol. 2008;52:190–9. https://doi.org/10.1016/j.jacc.2008.03.048.

    Article  CAS  PubMed  Google Scholar 

  174. Frishman WH. Beta-adrenergic blocker withdrawal. Am J Cardiol. 1987;59:26F–32F.

    Article  CAS  PubMed  Google Scholar 

  175. Psaty BM, Koepsell TD, Wagner EH, et al. The relative risk of incident coronary heart disease associated with recently stopping the use of beta-blockers. JAMA. 1990;263:1653–7.

    Article  CAS  PubMed  Google Scholar 

  176. Shammash JB, Trost JC, Gold JM, et al. Perioperative β-blocker withdrawal and mortality in vascular surgical patients. Am Heart J. 2001;141:148–53. https://doi.org/10.1067/mhj.2001.111547.

    Article  CAS  PubMed  Google Scholar 

  177. Wallace AW, Au S, Cason BA. Association of the pattern of use of perioperative β-blockade and postoperative mortality. Anesthesiology. 2010;113:794–805. https://doi.org/10.1097/ALN.0b013e3181f1c061.

    Article  CAS  PubMed  Google Scholar 

  178. Teichert M, de Smet PAGM, Hofman A, et al. Discontinuation of beta-blockers and the risk of myocardial infarction in the elderly. Drug Saf. 2007;30:541–9. https://doi.org/10.2165/00002018-200730060-00008.

    Article  CAS  PubMed  Google Scholar 

  179. Salpeter SR, Ormiston TM, Salpeter EE. Cardioselective beta-blockers for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2005;4:CD003566. https://doi.org/10.1002/14651858.CD003566.pub2.

    Article  Google Scholar 

  180. Conant J, Engler R, Janowsky D, et al. Central nervous system side effects of beta-adrenergic blocking agents with high and low lipid solubility. J Cardiovasc Pharmacol. 1989;13:656–61.

    Article  CAS  PubMed  Google Scholar 

  181. McAinsh J, Cruickshank JM. Beta-blockers and central nervous system side effects. Pharmacol Ther. 1990;46:163–97.

    Article  CAS  PubMed  Google Scholar 

  182. Heintzen MP, Strauer BE. Peripheral vascular effects of beta-blockers. Eur Heart J. 1994;15(Suppl C):2–7.

    Article  PubMed  Google Scholar 

  183. Paravastu SCV, Mendonca DA, da Silva A. Beta blockers for peripheral arterial disease. Cochrane Database Syst Rev. 2013;9:CD005508. https://doi.org/10.1002/14651858.CD005508.pub3.

    Article  Google Scholar 

  184. Frishman WH, Clark AJB. Effects of cardiovascular drugs on plasma lipids and lipoproteins. In: Frishman WHSE, editor. Cardiovascular pharmacotherapeutics. New York: McGraw Hill; 1997. p. 1515–59.

    Google Scholar 

  185. Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet. 2007;369:201–7. https://doi.org/10.1016/S0140-6736(07)60108-1.

    Article  CAS  PubMed  Google Scholar 

  186. Celik T, Iyisoy A, Kursaklioglu H, et al. Comparative effects of nebivolol and metoprolol on oxidative stress, insulin resistance, plasma adiponectin and soluble P-selectin levels in hypertensive patients. J Hypertens. 2006;24:591–6. https://doi.org/10.1097/01.hjh.0000209993.26057.de.

    Article  CAS  PubMed  Google Scholar 

  187. Lithell H, Andersson PE. Metabolic effects of carvedilol in hypertensive patients. Eur J Clin Pharmacol. 1997;52:13–7.

    Article  CAS  PubMed  Google Scholar 

  188. Fogari R, Zoppi A, Poletti L, et al. Sexual activity in hypertensive men treated with valsartan or carvedilol: a crossover study. Am J Hypertens. 2001;14:27–31.

    Article  CAS  PubMed  Google Scholar 

  189. Wassertheil-Smoller S, Oberman A, Blaufox MD, et al. The trial of antihypertensive interventions and management (TAIM) study. Final results with regard to blood pressure, cardiovascular risk, and quality of life. Am J Hypertens. 1992;5:37–44.

    Article  CAS  PubMed  Google Scholar 

  190. Solomon H, Man JW, Wierzbicki AS, Jackson G. Relation of erectile dysfunction to angiographic coronary artery disease. Am J Cardiol. 2003;91:230–1.

    Article  PubMed  Google Scholar 

  191. Gür Ö, Gurkan S, Yumun G, Turker P. The comparison of the effects of nebivolol and metoprolol on erectile dysfunction in the cases with coronary artery bypass surgery. Ann Thorac Cardiovasc Surg. 2017;23:91–5. https://doi.org/10.5761/atcs.oa.16-00242.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Brixius K, Middeke M, Lichtenthal A, et al. Nitric oxide, erectile dysfunction and beta-blocker treatment (MR NOED study): benefit of nebivolol versus metoprolol in hypertensive men. Clin Exp Pharmacol Physiol. 2007;34:327–31. https://doi.org/10.1111/j.1440-1681.2007.04551.x.

    Article  CAS  PubMed  Google Scholar 

  193. van Nueten L, Taylor FR, Robertson JI. Nebivolol vs atenolol and placebo in essential hypertension: a double-blind randomised trial. J Hum Hypertens. 1998;12:135–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buzea, C.A., Dan, A.R., Dan, GA. (2020). Beta-blockers as Antiarrhythmic Agents. In: Martínez-Rubio, A., Tamargo, J., Dan, G . (eds) Antiarrhythmic Drugs. Current Cardiovascular Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-34893-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34893-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34891-5

  • Online ISBN: 978-3-030-34893-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics