Skip to main content

Mechanisms of Cardiac Arrhythmias

  • Chapter
  • First Online:
Antiarrhythmic Drugs

Part of the book series: Current Cardiovascular Therapy ((CCT))

  • 1165 Accesses

Abstract

Cardiac myocytes are specialized cells responsible for both mechanical contraction and conduction of electrical impulses. Some myocytes demonstrate automaticity, defined by the capability of cardiac cells to undergo spontaneous diastolic depolarization and to initiate an electrical impulse in the absence of external electrical stimulation [1]. Spontaneously originated action potentials (AP) are propagated through cardiac myocytes, which are excitable, referring to their ability to respond to a stimulus with a regenerative AP [2]. Propagation of the cardiac impulse is enabled by gap junctions. Gap junctions are membrane structures composed of multiple intercellular ion channels that facilitate chemical and electrical communication between cells. Cardiac AP are regionally distinct due to each myocyte type expressing different numbers and types of ion channels [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peters N, Cabo C, Wit A. Arrhythmogenic mechanisms: automaticity, triggered activity and reentry. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology, from cell to bedside. 3rd ed. Philadelphia: Saunders; 2003. p. 345–55.

    Google Scholar 

  2. Grant A, Durrani S. Mechanisms of cardiac arrhythmias. In: Topol EJ, editor. Textbook of cardiovascular medicine. 3rd ed. Philadelphia: Lippicontt; 2007. p. 950–63.

    Google Scholar 

  3. Tomaselly G, Roden D. Molecular and cellular basis of cardiac electrophysiology. In: Sanjeev S, editor. Electrophysiological disorders of the heart. New York: Elsevier; 2005. p. 1–28.

    Google Scholar 

  4. Barbuti A, Baruscotti M, DiFrancesco D. The pacemaker current. J Cardiovasc Electrophysiol. 2007;18:342–7.

    Article  PubMed  Google Scholar 

  5. Matteo E, Nargeot J. Genesis and regulation of the heart automaticity. Physiol Rev. 2008;88:919–82.

    Article  CAS  Google Scholar 

  6. Issa ZF, Miller JM, Zipes DP. Electrophysiological mechanisms of cardiac arrhythmias: clinical arrhythmology and electrophysiology, a companion to Brawnwald’s heart disease. Philadelphia: Saunders; 2009. p. 1–26.

    Google Scholar 

  7. Gaztañaga L, Marchlinski FE, Betensky BP. Mecanismos de las arritmias cardiacas. Rev Esp Cardiol. 2012;65:174–85.

    Article  PubMed  Google Scholar 

  8. Jalife J, Delmar M, Anumonwo J, Berenfeld O, Anumonwo KJ. Basic cardiac electrophysiology for the clinician. 2nd ed. Hoboken: Wiley-Blackwell; 2009. p. 152–96.

    Book  Google Scholar 

  9. DiFrancesco D. Funny channels in the control of cardiac rhythm and mode of action of selective blockers. Pharmacol Res. 2006;53:399–406.

    Article  CAS  PubMed  Google Scholar 

  10. Almendral J, González-Torrecilla E. Mecanismos de las arritmias cardiacas. Arritmología clínica. Madrid: Sociedad Española de Cardiología; 2007. p. 81–103.

    Google Scholar 

  11. Dangman KH, Hoffman BF. Studies on overdrive stimulation of canine cardiac Purkinje fibers: maximal diastolic potential as a determinant of the response. J Am Coll Cardiol. 1983;2:1183–90.

    Article  CAS  PubMed  Google Scholar 

  12. Rosenthal J, Ferrier G. Contribution of variable entrance and exit block in protected foci to arrhythmogenesis in isolated ventricular tissues. Circulation. 1983;67:1–8.

    Article  CAS  PubMed  Google Scholar 

  13. Zipes DP. Mechanisms of clinical arrhythmias. J Cardiovasc Electrophysiol. 2003;14:902–12.

    Article  PubMed  Google Scholar 

  14. Clusin WT. Calcium and cardiac arrhythmias: DADs, EADs, and alternans. Crit Rev Clin Lab Sci. 2003;40:227–75.

    Article  Google Scholar 

  15. Rosen MR, Gelband H, Merker C, Hoffman BF. Mechanisms of digitalis toxicity. Effects of ouabain on phase four of canine Purkinje fiber transmembrane potentials. Circulation. 1973;47:681–9.

    Article  CAS  PubMed  Google Scholar 

  16. Wieland JM, Marchlinski FE. Electrocardiographic response of digoxin-toxic fascicular tachycardia to fab fragments: implications for tachycardia mechan- ism. Pacing Clin Electrophysiol. 1986;9:727–38.

    Article  CAS  PubMed  Google Scholar 

  17. Undrovinas Al FA, Makielski JC. Inward sodium current at resting potentials in single cardiac myocytes induced by the ischemic metabolite lysophosphatidylcholine. Circ Res. 1992;71:1231–41.

    Article  Google Scholar 

  18. Paavola J, Vitaasalo M, Laitinen-Forsblom PJ, Pasternack M, Swan H, Tikkanen I, et al. Mutant ryanodine receptors in catecholaminergic polymorphic ventri- cular tachycardia generate delayed afterdepolarizations due to increased pro- pensity to Ca2+ waves. Eur Heart J. 2007;28:1135–42.

    Article  CAS  PubMed  Google Scholar 

  19. Bruce B, Lerman MD. Adenosine sensitive ventricular tachycardia: evidence suggesting cyclic AMP-mediated triggered activity. Circulation. 1986;74:270–80.

    Article  Google Scholar 

  20. Yamada M, Ohta K, Niwa A, Tsujino N, Nakada T, Hirose M. Contribution of L- type Ca2+ channels to early depolarizations induced by IKr and IKs channel suppression in guinea pig ventricular myocytes. J Membr Biol. 2008;222:151–66.

    Article  CAS  PubMed  Google Scholar 

  21. Mitsunori M, Lin S, Xie Y, Chua SK, Joung B, Han S, et al. Genesis of phase 3 early afterdepolarizations and triggered activity in acquired long-QT syndrome. Circ Arrhythm Electrophysiol. 2011;4:103–11.

    Article  Google Scholar 

  22. Drew BJ, Ackerman MJ, Funk M, Gibler WB, Kligfield P, Menon V, Philippides GJ, Roden DM, Zareba W. Prevention of torsade de pointes in hospital settings. JACC. 2010;55:934–47.

    Article  PubMed  Google Scholar 

  23. White CM, Xie J, Chow MS, Kluger J. Prophylactic magnesium to decrease the arrhythmogenic potential of class III antiarrhythmic agents in a Rabbit model. Pharmacotherapy. 1999;19:635–40.

    Article  CAS  PubMed  Google Scholar 

  24. Hiroshu M, Jiashin W. The QT syndrome: long and short. Lancet. 2008;372:750–63.

    Article  CAS  Google Scholar 

  25. Cranefield PF, Aronson RS. Cardiac arrhytmias: the role of triggered activity and other mehanism. Mount Kisco. New York: Futura; 1988.

    Google Scholar 

  26. Schwartz PJ, Crotti L, Insolia R. Long-QT syndrome: from genetics to management. Circ Arrhythm Electrophysiol. 2012;5:868–77.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kapplinger JD, Tester DJ, Salisbury BA, Carr JL, Harris-Kerr C, Pollevick GD, Wilde AA, Ackerman MJ. Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION long QT syndrome genetic test. Heart Rhythm. 2009;6:1297–303.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kannankeril P, Roden DM, Darbar D. Drug induced long QT syndrome. Pharmacol Rev. 2010;62:760–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rohr S. Role of gap junctions in the propagation of the cardiac action potential. Cardiovasc Res. 2004;62:309–22.

    Article  CAS  PubMed  Google Scholar 

  30. Kleber AG, Rudy Y. Basis mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev. 2004;84:431–88.

    Article  CAS  PubMed  Google Scholar 

  31. Cabo C, Wit A. Cellular electrophysiologic mechanisms of arrhythmias. Cardiol Clin. 1997;4:521–38.

    Google Scholar 

  32. Allesie MA, Bonke FJ, Schopman FJ. Circus movement in Rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept. A new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ Res. 1976;39:168–77.

    Article  Google Scholar 

  33. Valderrábano M. Influence of anisotropic conduction properties in the propagation of the cardiac action potential. Prog Biophys Mol Biol. 2007;94:144–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Sapch MS, Josephson ME. Initiating reentry: the role of nonuniform anisotropy in small circuits. J Cardiovasc Electrophysiol. 1994;5:182–209.

    Article  Google Scholar 

  35. Antzelevirch C. Basis mechanisms of reentrant arrhythmias. Curr Opin Cardiol. 2001;16:1–7.

    Article  Google Scholar 

  36. Davidenko J, Kent P, Jalife J. Spiral waves in normal isolated ventricular muscle. Waves and patterns in biological systems. Physica D. 1991;49:182–97.

    Article  Google Scholar 

  37. Morillo CA, Guzmán JC. Taquicardia sinusal inapropiada: actualización. Rev Esp Cardiol. 2007;60(Supl 3):10–4.

    PubMed  Google Scholar 

  38. Marchinski F. The tachycardias. Harrison’s cardiovacular medicine. New York: McGraw-Hill; 2010. p. 147–77.

    Google Scholar 

  39. Arora R, Verheule S, Scott L, Navarrete A, Katari V, Wilson E, et al. Arrhythmogenic substrate of the pulmonary vein assessed by high resolution optical mapping. Circulation. 2003;107:1816–21.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sanders P, Nalliah CJ, Dubois R, Takahashi Y, Hocini M, Rotter M, et al. Frequency mapping of the pulmonary veins in paroxysmal versus permanent atrial fibrillation. J Cardiovasc Electrophysiol. 2006;17:965–72.

    Article  PubMed  Google Scholar 

  41. Tsai CF, Tai CT, Hsieh MH, Lin WS, Yu WC, Ueng KC, et al. Initiation of atrial fibrillation by ectopic beats originating from the superior vena cava. Circulation. 2000;102:67–74.

    Article  CAS  PubMed  Google Scholar 

  42. Okuyama Y, Miyauchi Y, Park AM, Hamabe A, Zhou S, Hayashi H, et al. High resolution mapping of the pulmonary vein and the vein of Marsharll during induce atrial fibrillation and atrial tachycardia in a canine model of pacing induced congestive heart failure. J Am Coll Cardiol. 2003;42:348–60.

    Article  PubMed  Google Scholar 

  43. Sanders P, Berenfeld O, Hocini M, Ja ̈ıs P, Vaidyanathan R, Hsu LF, et al. Spectral analysis identifies sites of high frequency activity maintaining atrial fibrillation in humans. Circulation. 2005;112:789–97.

    Article  PubMed  Google Scholar 

  44. Centurio OA, Shimizu A, Somoto S, Konoe A. Mechanisms for the genesis of paroxysmal atrial fibrillation in the Wolff-Parkinson-White syndrome: intrinsic atrial muscle vulnerability vs. electrophysiological properties of the accessory pathway. Europace. 2008;10:294–302.

    Article  Google Scholar 

  45. Rubar M, Zipes DP. Genesis of cardiac arrhythmias: electrophysiologic considerations. In: Bonow RO, Mann DL, Zipes DP, Libby P, editors. Braunwald’s heart disease. A textbook of cardiovascular medicine. 9th ed. Philadelphia: Saunders Elsevier; 2011. p. 653–86.

    Google Scholar 

  46. Peters NS, Coromilas J, Severs NJ, Wit AL. Disturbed connexin 43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia. Circulation. 1997;95:988–96.

    Article  CAS  PubMed  Google Scholar 

  47. Ouyang F, Cappato R, Ernst S, Goya M, Volkmer M, Habe J, et al. Electroanatomical substrate of idiopathic left ventricular tachycardia: unidirectional block and macroreentry within the purkinje network. Circulation. 2002;105:462–9.

    Article  PubMed  Google Scholar 

  48. Issa ZF, Miller JM, Zipes DP. Other ventricular tachycardias: clinical arrhythmology and electrophysiology. A companion to Brawnwald’s heart disease. Philadelphia: Saunders; 2009. p. 482.

    Google Scholar 

  49. Roden DM. Drug induced prolongation of the QT interval. N Engl J Med. 2004;350:1013–22.

    Article  CAS  PubMed  Google Scholar 

  50. Cross B, Homoud M, Link M, Foote C, Carlitski AC, Weinstock J, et al. The short QT syndrome. J Interv Card Electrophysiol. 2011;31:25–31.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Almendral .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barrio-Lopez, T., Almendral, J. (2020). Mechanisms of Cardiac Arrhythmias. In: Martínez-Rubio, A., Tamargo, J., Dan, G . (eds) Antiarrhythmic Drugs. Current Cardiovascular Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-34893-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34893-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34891-5

  • Online ISBN: 978-3-030-34893-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics