Skip to main content

Monotonicity Detection and Enforcement in Longitudinal Classification

  • Conference paper
  • First Online:
Artificial Intelligence XXXVI (SGAI 2019)

Abstract

Longitudinal datasets contain repeated measurements of the same variables at different points in time, which can be used by researchers to discover useful knowledge based on the changes of the data over time. Monotonic relations often occur in real-world data and need to be preserved in data mining models in order for the models to be acceptable by users. We propose a new methodology for detecting monotonic relations in longitudinal datasets and applying them in longitudinal classification model construction. Two different approaches were used to detect monotonic relations and include them into the classification task. The proposed approaches are evaluated using data from the English Longitudinal Study of Ageing (ELSA) with 10 different age-related diseases used as class variables to be predicted. A gradient boosting algorithm (XGBoost) is used for constructing classification models in two scenarios: enforcing and not enforcing the constraints. The results show that enforcement of monotonicity constraints can consistently improve the predictive accuracy of the constructed models. The produced models are fully monotonic according to the monotonicity constraints, which can have a positive impact on model acceptance in real world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ben-David, A.: Monotonicity maintenance in information-theoretic machine learning algorithms. Mach. Learn. 19(1), 29–43 (1995). https://doi.org/10.1023/a:1022655006810

    Article  Google Scholar 

  2. Ben-David, A., Sterling, L., Tran, T.: Adding monotonicity to learning algorithms may impair their accuracy. Expert Syst. Appl. 36(3), 6627–6634 (2009). https://doi.org/10.1016/j.eswa.2008.08.021

    Article  Google Scholar 

  3. Brookhouse, J., Otero, F.E.B.: Monotonicity in ant colony classification algorithms. In: Dorigo, M., et al. (eds.) ANTS 2016. LNCS, vol. 9882, pp. 137–148. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44427-7_12

    Chapter  Google Scholar 

  4. Cano, J.R., Gutiérrez, P.A., Krawczyk, B., Woźniak, M., García, S.: Monotonic classification: an overview on algorithms, performance measures and data sets. Neurocomputing 341, 168–182 (2019). https://doi.org/10.1016/j.neucom.2019.02.024

    Article  Google Scholar 

  5. Chen, C.C., Li, S.T.: Credit rating with a monotonicity-constrained support vector machine model. Expert Syst. Appl. 41(16), 7235–7247 (2014)

    Article  Google Scholar 

  6. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 2016, pp. 785–794. ACM Press (2016). https://doi.org/10.1145/2939672.2939785

  7. Clemens, S., et al.: English longitudinal study of ageing: waves 0-8, 1998–2017 (2019). https://doi.org/10.5255/ukda-sn-5050-16

  8. Duivesteijn, W., Feelders, A.: Nearest neighbour classification with monotonicity constraints. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS (LNAI), vol. 5211, pp. 301–316. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87479-9_38

    Chapter  Google Scholar 

  9. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006). https://doi.org/10.1016/j.neucom.2005.12.126

    Article  Google Scholar 

  10. Kaiser, A.: A review of longitudinal datasets on ageing. J. Popul. Ageing 6(1–2), 5–27 (2013). https://doi.org/10.1007/s12062-013-9082-3

    Article  Google Scholar 

  11. Martens, D., Baesens, B.: Building acceptable classification models. In: Stahlbock, R., Crone, S., Lessmann, S. (eds.) Data Mining. Annals of Information Systems, vol. 8, pp. 53–74. Springer, Boston (2009). https://doi.org/10.1007/978-1-4419-1280-0_3

    Chapter  Google Scholar 

  12. Mo, J., Siddiqui, S., Maudsley, S., Cheung, H., Martin, B., Johnson, C.A.: Classification of Alzheimer Diagnosis from ADNI plasma biomarker data. In: Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics - BCB 2013. ACM Press (2013)

    Google Scholar 

  13. Niemann, U., Hielscher, T., Spiliopoulou, M., Volzke, H., Kuhn, J.P.: Can we classify the participants of a longitudinal epidemiological study from their previous evolution? In: 2015 IEEE 28th International Symposium on Computer-Based Medical Systems. IEEE, June 2015. https://doi.org/10.1109/cbms.2015.12

  14. Pijls, W., Potharst, R.: Repairing non-monotone ordinal data sets by changing class labels. Technical report, Erasmus University Rotterdam, December 2014

    Google Scholar 

  15. Pomsuwan, T., Freitas, A.A.: Feature selection for the classification of longitudinal human ageing data. In: 2017 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE, November 2017. https://doi.org/10.1109/icdmw.2017.102

  16. Ribeiro, C., Freitas, A.A.: A mini-survey of supervised machine learning approaches for coping with ageing-related longitudinal datasets. In: 3rd Workshop on AI for Aging, Rehabilitation and Independent Assisted Living (ARIAL), held as part of IJCAI-2019 (2019)

    Google Scholar 

  17. Ribeiro, C.E., Brito, L.H.S., Nobre, C.N., Freitas, A.A., Zárate, L.E.: A revision and analysis of the comprehensiveness of the main longitudinal studies of human aging for data mining research. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 7(3), e1202, March 2017. https://doi.org/10.1002/widm.1202

  18. Verbeke, W., Martens, D., Baesens, B.: RULEM: a novel heuristic rule learning approach for ordinal classification with monotonicity constraints. Appl. Soft Comput. 60, 858–873 (2017). https://doi.org/10.1016/j.asoc.2017.01.042

    Article  Google Scholar 

  19. Zhang, Y., Jia, H., Li, A., Liu, J., Li, H.: Study on prediction of activities of daily living of the aged people based on longitudinal data. Procedia Comput. Sci. 91, 470–477 (2016). https://doi.org/10.1016/j.procs.2016.07.122

    Article  Google Scholar 

  20. Zhu, H., Tsang, E.C., Wang, X.Z., Ashfaq, R.A.R.: Monotonic classification extreme learning machine. Neurocomputing 225, 205–213 (2017). https://doi.org/10.1016/j.neucom.2016.11.021

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Ovchinnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ovchinnik, S., Otero, F.E.B., Freitas, A.A. (2019). Monotonicity Detection and Enforcement in Longitudinal Classification. In: Bramer, M., Petridis, M. (eds) Artificial Intelligence XXXVI. SGAI 2019. Lecture Notes in Computer Science(), vol 11927. Springer, Cham. https://doi.org/10.1007/978-3-030-34885-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34885-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34884-7

  • Online ISBN: 978-3-030-34885-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics