Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 268 Accesses

Abstract

The focus of this thesis has been the study of synchronization phenomena in complex networks and their control through time delay. Starting from a pair of oscillators and proceeding via simple ring networks, we have outlined the progression to complex multilayer structures, examining synchronization in many of its facets. Thereby, Part I has been focused on the study of synchronization phenomena in single-layer systems and Part II has explored synchronization scenarios in multilayer networks as a common description of neuronal brain structures. In this Chapter, the main results of the thesis are summarized and discussed. Furthermore, we give an outlook and consider future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barthó P, Slézia A, Mátyás F, Faradzs-Zade L, Ulbert I, Harris KD, Acsaády L (2014) Ongoing network state controls the length of sleep spindles via inhibitory activity. Neuron 82:1367

    Google Scholar 

  2. Berner R, Fialkowski J, Kasatkin DV, Nekorkin V, Schöll E, Yanchuk S (2019) Self-similar hierarchical frequency clusters in adaptive networks of phase oscillators (not published)

    Google Scholar 

  3. Berner R, Schöll E, Yanchuk S (2019) Multi-clusters in adaptive networks. SIAM J Appl Dyn Syst

    Google Scholar 

  4. Bodor AL, Giber K, Rovó Z, Ulbert I, Acsaády L (2008) Structural correlates of efficient GABAergic transmission in the basal ganglia-thalamus pathway. J Neurosci 28:3090

    Google Scholar 

  5. Bogomolov S, Strelkova G, Schöll E, Anishchenko VS (2016) Amplitude and phase chimeras in an ensemble of chaotic oscillators. Tech Phys Lett 42:765–768

    Google Scholar 

  6. Bogomolov S, Slepnev A, Strelkova G, Schöll E, Anishchenko VS (2017) Mechanisms of appearance of amplitude and phase chimera states in a ring of nonlocally coupled chaotic systems. Commun Nonlinear Sci Numer Simul 43:25

    Google Scholar 

  7. Bokor H, Frere SG, Eyre MD, Slézia A, Ulbert I, Lüthi A, Acsaády L (2005) Selective GABAergic control of higher-order thalamic relays. Neuron 45:929

    Google Scholar 

  8. Gollo LL, Mirasso CR, Atienza M, Crespo-Garcia M, Cantero JL (2011) Theta band zero-lag long-range cortical synchronization via hippocampal dynamical relaying. PLoS ONE 6:e17756

    Google Scholar 

  9. Groh A, Bokor H, Mease RA, Plattner VM, Hangya B, Deschenes M, Acsaády L (2013) Convergence of cortical and sensory driver inputs on single thalamocortical cells. Cereb Cortex 12:3167

    Google Scholar 

  10. Guillery RW, Sherman SM (2002) Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron 33:163–175

    Google Scholar 

  11. Halassa MM, Kastner S (2017) Thalamic functions in distributed cognitive control. Nat Neurosci 20:1669–1679

    Google Scholar 

  12. Kasatkin DV, Yanchuk S, Schöll E, Nekorkin VI (2017) Self-organized emergence of multi-layer structure and chimera states in dynamical networks with adaptive couplings. Phys Rev E 96:062211

    Google Scholar 

  13. Lavallee P, Urbain N, Dufresne C, Bokor H, Acsaády L, Deschenes M (2005) Feedforward inhibitory control of sensory information in higher-order thalamic nuclei. J Neurosci 25:7489

    Google Scholar 

  14. Rovó Z, Ulbert I, Acsaády L (2012) Drivers of the primate thalamus. J Neurosci 32:17894

    Google Scholar 

  15. Rovó Z, Mátyás F, Barthó P, Slézia A, Lecci S, Pellegrini C, Astori S, David C, Hangya B, Lüthi A, Acsaády L (2014) Phasic, nonsynaptic GABA-A receptor-mediated inhibition entrains thalamocortical oscillations. J Neurosci 34:7137

    Google Scholar 

  16. Vann SD, Nelson AJD (2015) The mammillary bodies and memory: more than a hippocampal relay. In: Progress Brain Research, vol 219. Elsevier, Amsterdam, pp 163–185

    Google Scholar 

  17. Wanaverbecq N, Bodor AL, Bokor H, Slézia A, Lüthi A, Acsaády L (2008) Contrasting the functional properties of GABAergic axon terminals with single and multiple synapses in the thalamus. J Neurosci 28:11848

    Google Scholar 

  18. Wang X, Vaingankar V, Sanchez CS, Sommer FT, Hirsch JA (2011) Thalamic interneurons and relay cells use complementary synaptic mechanisms for visual processing. Nat Neurosci 14:224

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Sawicki .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sawicki, J. (2019). Conclusion. In: Delay Controlled Partial Synchronization in Complex Networks. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-34076-6_8

Download citation

Publish with us

Policies and ethics