Skip to main content

Accelerated MRI Reconstruction with Dual-Domain Generative Adversarial Network

  • Conference paper
  • First Online:
Machine Learning for Medical Image Reconstruction (MLMIR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11905))

Abstract

Fast reconstruction of under-sampled acquisitions has always been a central issue in MRI reconstruction. Recently years has seen multiple studies using deep learning as a de-aliasing framework to restore the aliased image. However, restoration of fine details is still problematic, especially when dealing with noisy image datasets. Sparked by the Fourier transform relationship, this work proposed and tested a new hypothesis: can regularization be directly added in the frequency domain to correct the high-frequency imperfection? To achieve this, discriminative networks are applied in both the image domain and the frequency domain (so-called dual-domain GAN). Evaluation on multiple datasets proved that the dual-domain GAN approach is an effective way to improve the quality of accelerated MR reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng, J.Y., Zhang, T., Alley, M.T., Lustig, M., Vasanawala, S.S., Pauly, J.M.: Variable-density radial view-ordering and sampling for time-optimized 3D Cartesian imaging. In: Proceedings of the ISMRM Workshop on Data Sampling and Image Reconstruction (2013)

    Google Scholar 

  2. Eo, T., Jun, Y., Kim, T., Jang, J., Lee, H.J., Hwang, D.: KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magn. Reson. Med. 80, 2188–2201 (2018)

    Article  Google Scholar 

  3. Feng, L., et al.: Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn. Reson. Med. 72(3), 707–717 (2014)

    Article  Google Scholar 

  4. Gamper, U., Boesiger, P., Kozerke, S.: Compressed sensing in dynamic MRI. Magn. Reson. Med. 59(2), 365–373 (2008). An Official Journal of the International Society for Magnetic Resonance in Medicine

    Article  Google Scholar 

  5. Griswold, M.A., et al.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 47(6), 1202–1210 (2002). An Official Journal of the International Society for Magnetic Resonance in Medicine

    Article  Google Scholar 

  6. Han, Y., Ye, J.C.: k-space deep learning for accelerated MRI. arXiv preprint arXiv:1805.03779 (2018)

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 2366–2369. IEEE (2010)

    Google Scholar 

  9. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  10. Jung, H., Sung, K., Nayak, K.S., Kim, E.Y., Ye, J.C.: k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magn. Reson. Med. 61(1), 103–116 (2009). An Official Journal of the International Society for Magnetic Resonance in Medicine

    Article  Google Scholar 

  11. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR, vol. 2, p. 4 (2017)

    Google Scholar 

  12. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007). An Official Journal of the International Society for Magnetic Resonance in Medicine

    Article  Google Scholar 

  13. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2794–2802 (2017)

    Google Scholar 

  14. Mardani, M., et al.: Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans. Med. Imaging 38(1), 167–179 (2019)

    Article  Google Scholar 

  15. Murphy, M., Alley, M., Demmel, J., Keutzer, K., Vasanawala, S., Lustig, M.: Fast \({\ell }_{1}\)-SPIRiT compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime. IEEE Trans. Med. Imaging 31(6), 1250–1262 (2012)

    Article  Google Scholar 

  16. Otazo, R., Kim, D., Axel, L., Sodickson, D.K.: Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magn. Reson. Med. 64(3), 767–776 (2010)

    Article  Google Scholar 

  17. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: SENSE: sensitivity encoding for fast MRI. Magn. Reson. Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Sawyer, A.M., et al.: Creation of fully sampled MR data repository for compressed sensing of the knee (2013)

    Google Scholar 

  20. Seitzer, M., et al.: Adversarial and perceptual refinement for compressed sensing MRI reconstruction. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 232–240. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_27

    Chapter  Google Scholar 

  21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  22. Tanenbaum, L.N., et al.: Synthetic MRI for clinical neuroimaging: results of the magnetic resonance image compilation (MAGiC) prospective, multicenter, multireader trial. Am. J. Neuroradiol. 38, 1103–1110 (2017)

    Article  Google Scholar 

  23. Uecker, M., et al.: ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn. Reson. Med. 71(3), 990–1001 (2014)

    Article  Google Scholar 

  24. Van Essen, D.C., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  25. Wang, S., et al.: Accelerating magnetic resonance imaging via deep learning. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 514–517. IEEE (2016)

    Google Scholar 

  26. Warntjes, J., Leinhard, O.D., West, J., Lundberg, P.: Rapid magnetic resonance quantification on the brain: optimization for clinical usage. Magn. Reson. Med. 60(2), 320–329 (2008). An Official Journal of the International Society for Magnetic Resonance in Medicine

    Article  Google Scholar 

  27. Yang, G., et al.: DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2017)

    Article  MathSciNet  Google Scholar 

  28. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  29. Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R., Rosen, M.S.: Image reconstruction by domain-transform manifold learning. Nature 555(7697), 487 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Zaharchuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, G., Gong, E., Banerjee, S., Pauly, J., Zaharchuk, G. (2019). Accelerated MRI Reconstruction with Dual-Domain Generative Adversarial Network. In: Knoll, F., Maier, A., Rueckert, D., Ye, J. (eds) Machine Learning for Medical Image Reconstruction. MLMIR 2019. Lecture Notes in Computer Science(), vol 11905. Springer, Cham. https://doi.org/10.1007/978-3-030-33843-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33843-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33842-8

  • Online ISBN: 978-3-030-33843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics