Skip to main content

Self-supervised Recurrent Neural Network for 4D Abdominal and In-utero MR Imaging

  • Conference paper
  • First Online:
Machine Learning for Medical Image Reconstruction (MLMIR 2019)

Abstract

Accurately estimating and correcting the motion artifacts are crucial for 3D image reconstruction of the abdominal and in-utero magnetic resonance imaging (MRI). The state-of-art methods are based on slice-to-volume registration (SVR) where multiple 2D image stacks are acquired in three orthogonal orientations. In this work, we present a novel reconstruction pipeline that only needs one orientation of 2D MRI scans and can reconstruct the full high-resolution image without masking or registration steps. The framework consists of two main stages: the respiratory motion estimation using a self-supervised recurrent neural network, which learns the respiratory signals that are naturally embedded in the asymmetry relationship of the neighborhood slices and cluster them according to a respiratory state. Then, we train a 3D deconvolutional network for super-resolution (SR) reconstruction of the sparsely selected 2D images using integrated reconstruction and total variation loss. We evaluate the classification accuracy on 5 simulated images and compare our results with the SVR method in adult abdominal and in-utero MRI scans. The results show that the proposed pipeline can accurately estimate the respiratory state and reconstruct 4D SR volumes with better or similar performance to the 3D SVR pipeline with less than 20% sparsely selected slices. The method has great potential to transform the 4D abdominal and in-utero MRI in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://mirtk.github.io/.

References

  1. Lloyd, D.F.A., et al.: Three-dimensional visualisation of the fetal heart using prenatal MRI with motion corrected slice-volume registration. Lancet 393, 1619–1627 (2018)

    Article  Google Scholar 

  2. Story, L., Zhang, T., Aljabar, P., Hajnal, J., Shennan, A., Rutherford, M.: Magnetic resonance imaging assessment of lung volumes in fetuses at high risk of preterm birth. BJOG Int. J. Obstet. Gynaecol. 124, 24 (2017)

    Article  Google Scholar 

  3. Story, L., Hutter, J., Zhang, T., Shennan, A.H., Rutherford, M.: The use of antenatal fetal magnetic resonance imaging in the assessment of patients at high risk of preterm birth. Eur. J. Obstet. Gynecol. Reprod. Biol. 222, 134–141 (2018)

    Article  Google Scholar 

  4. Story, L., et al.: Magnetic resonance imaging assessment of lung: body volume ratios in fetuses at high risk of preterm birth. BJOG Int. J. Obstet. Gynaecol. 126, 8 (2019)

    Article  Google Scholar 

  5. Gholipour, A., Estroff, J.A., Warfield, S.K.: Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI. IEEE Trans. Med. Imaging 29(10), 1739–1758 (2010)

    Article  Google Scholar 

  6. Kuklisova-Murgasova, M., Quaghebeur, G., Rutherford, M.A., Hajnal, J.V., Schnabel, J.A.: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med. Image Anal. 16(8), 1550–1564 (2012)

    Article  Google Scholar 

  7. Kainz, B., et al.: Fast volume reconstruction from motion corrupted stacks of 2D slices. IEEE Trans. Med. Imaging 34(9), 1901–1913 (2015)

    Article  Google Scholar 

  8. Ebner, M., et al.: An automated localization, segmentation and reconstruction framework for fetal brain MRI. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 313–320. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_36

    Chapter  Google Scholar 

  9. Torrents-Barrena, J., et al.: Fully automatic 3D reconstruction of the placenta and its peripheral vasculature in intrauterine fetal MRI. Med. Image Anal. 54, 263–279 (2019)

    Article  Google Scholar 

  10. Ramanathan, V., Tang, K., Mori, G., Fei-Fei, L.: Learning temporal embeddings for complex video analysis. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4471–4479 (2015)

    Google Scholar 

  11. Fernando, B., Bilen, H., Gavves, E., Gould, S.: Self-supervised video representation learning with odd-one-out networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3636–3645 (2017)

    Google Scholar 

  12. Wei, D., Lim, J., Zisserman, A., Freeman, W.T.: Learning and using the arrow of time, pp. 8052–8060 (2018)

    Google Scholar 

  13. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)

    Article  Google Scholar 

  14. Jackson, L.H., et al.: Respiration resolved imaging using continuous steady state multiband excitation with linear frequency sweeps. In: ISMRM, Paris, ISMRM, pp. 5–7 (2018)

    Google Scholar 

  15. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)

    Article  Google Scholar 

  16. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Institutes of Health Human Placenta Project [1U01HD087202-01], by the Wellcome Trust IEH Award [102431], by the Wellcome/EPSRC Centre for Medical Engineering [WT203148/Z/16/Z] and by the National Institute for Health Research (NIHR) Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London. The authors also thank NVIDIA Corporation for the GPU grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, T. et al. (2019). Self-supervised Recurrent Neural Network for 4D Abdominal and In-utero MR Imaging. In: Knoll, F., Maier, A., Rueckert, D., Ye, J. (eds) Machine Learning for Medical Image Reconstruction. MLMIR 2019. Lecture Notes in Computer Science(), vol 11905. Springer, Cham. https://doi.org/10.1007/978-3-030-33843-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33843-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33842-8

  • Online ISBN: 978-3-030-33843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics