Skip to main content

Spatiotemporal PET Reconstruction Using ML-EM with Learned Diffeomorphic Deformation

  • Conference paper
  • First Online:
Machine Learning for Medical Image Reconstruction (MLMIR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11905))

Abstract

Patient movement in emission tomography deteriorates reconstruction quality because of motion blur. Gating the data improves the situation somewhat: each gate contains a movement phase which is approximately stationary. A standard method is to use only the data from a few gates, with little movement between them. However, the corresponding loss of data entails an increase of noise. Motion correction algorithms have been implemented to take into account all the gated data, but they do not scale well in computation time, especially not in 3D. We propose a novel motion correction algorithm which addresses the scalability issue. Our approach is to combine an enhanced ML-EM algorithm with deep learning based movement registration. The training is unsupervised, and with artificial data. We expect this approach to scale very well to higher resolutions and to 3D, as the overall cost of our algorithm is only marginally greater than that of a standard ML-EM algorithm. We show that we can significantly decrease the noise corresponding to a limited number of gates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). http://tensorflow.org/. Software available from tensorflow.org

  2. Adler, J., Kohr, H., Öktem, O.: ODL-a Python framework for rapid prototyping in inverse problems. Royal Institute of Technology (2017)

    Google Scholar 

  3. Adler, J., Öktem, O.: Solving ill-posed inverse problems using iterative deep neural networks. Inverse Probl. 33(12), 124007 (2017)

    Article  MathSciNet  Google Scholar 

  4. Adler, J., Öktem, O.: Learned primal-dual reconstruction. IEEE Trans. Med. Imaging 37(6), 1322–1332 (2018)

    Article  Google Scholar 

  5. Blume, M., Martinez-Moller, A., Keil, A., Navab, N., Rafecas, M.: Joint reconstruction of image and motion in gated positron emission tomography. IEEE Trans. Med. Imaging 29(11), 1892–1906 (2010)

    Article  Google Scholar 

  6. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning for fast probabilistic diffeomorphic registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 729–738. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_82

    Chapter  Google Scholar 

  7. Dalca, A.V., Guttag, J., Sabuncu, M.R.: Anatomical priors in convolutional networks for unsupervised biomedical segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9290–9299 (2018)

    Google Scholar 

  8. Dawood, M., Jiang, X., Schäfers, K.P. (eds.): Correction Techniques in Emission Tomography. Series in Medical Physics and Biomedical Engineering. CRC Press, Boca Raton (2008)

    Google Scholar 

  9. Farag, A.A., Shalaby, A., Abd El Munim, H., Farag, A.: Variational shape representation for modeling, elastic registration and segmentation. In: Li, S., Tavares, J.M.R.S. (eds.) Shape Analysis in Medical Image Analysis. LNCVB, vol. 14, pp. 95–121. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-03813-1_3

    Chapter  Google Scholar 

  10. Gigengack, F., Jiang, X., Dawood, M., Schäfers, K.P.: Motion Correction in Thoracic Positron Emission Tomography. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-08392-6

    Book  Google Scholar 

  11. Gilland, D.R., Mair, B.A., Bowsher, J.E., Jaszczak, R.J.: Simultaneous reconstruction and motion estimation for gated cardiac ECT. IEEE Trans. Nucl. Sci. 49(5), 2344–2349 (2002)

    Article  Google Scholar 

  12. Gravier, E., Yang, Y., King, M.A., Jin, M.: Fully 4D motion-compensated reconstruction of cardiac SPECT images. Phys. Med. Biol. 51(18), 4603–4619 (2006)

    Article  Google Scholar 

  13. Hinkle, J., Szegedi, M., Wang, B., Salter, B., Joshi, S.: 4D CT image reconstruction with diffeomorphic motion model. Med. Image Anal. 16(6), 1307–1316 (2012)

    Article  Google Scholar 

  14. Hudson, H.M., Larkin, R.S.: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 13(4), 601–609 (1994)

    Article  Google Scholar 

  15. Jacobson, M.W., Fessler, J.A.: Joint estimation of image and deformation parameters in motion-corrected PET. In: 2003 IEEE Nuclear Science Symposium Conference Record, pp. 3290–3294 (2003)

    Google Scholar 

  16. Jacobson, M.W., Fessler, J.A.: Joint estimation of respiratory motion and activity in 4D PET using CT side information. In: 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, Arlington, VA, 6–9 April 2006, pp. 275–278 (2006)

    Google Scholar 

  17. Li, T., Zhang, M., Qi, W., Asma, E., Qi, J.: Motion correction of respiratory-gated pet image using deep learning based image registration framework. In: 15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, vol. 11072, p. 110720Q. International Society for Optics and Photonics (2019)

    Google Scholar 

  18. Rahmim, A., Tang, J., Zaidi, H.: Four-dimensional image reconstruction strategies in cardiac-gated and respiratory- gated PET imaging. PET Clin. 8(1), 51–67 (2013)

    Article  Google Scholar 

  19. Reader, A.J., Verhaeghe, J.: 4D image reconstruction for emission tomography. Phys. Med. Biol. 59(22), R371–R418 (2014)

    Article  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1(2), 113–122 (1982)

    Article  Google Scholar 

  22. Younes, L.: Shapes and Diffeomorphisms. Applied Mathematical Sciences, vol. 171. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12055-8

    Book  MATH  Google Scholar 

  23. Zhang, Y., Ghodrati, A., Brooks, D.H.: An analytical comparison of three spatio-temporal regularization methods for dynamic linear inverse problems in a common statistical framework. Inverse Probl. 21(1), 357–382 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Swedish Foundation of Strategic Research grant AM13-004.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Öktem, O., Pouchol, C., Verdier, O. (2019). Spatiotemporal PET Reconstruction Using ML-EM with Learned Diffeomorphic Deformation. In: Knoll, F., Maier, A., Rueckert, D., Ye, J. (eds) Machine Learning for Medical Image Reconstruction. MLMIR 2019. Lecture Notes in Computer Science(), vol 11905. Springer, Cham. https://doi.org/10.1007/978-3-030-33843-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33843-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33842-8

  • Online ISBN: 978-3-030-33843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics