Skip to main content

Data Consistent Artifact Reduction for Limited Angle Tomography with Deep Learning Prior

  • Conference paper
  • First Online:
Machine Learning for Medical Image Reconstruction (MLMIR 2019)

Abstract

Robustness of deep learning methods for limited angle tomography is challenged by two major factors: (a) due to insufficient training data the network may not generalize well to unseen data; (b) deep learning methods are sensitive to noise. Thus, generating reconstructed images directly from a neural network appears inadequate. We propose to constrain the reconstructed images to be consistent with the measured projection data, while the unmeasured information is complemented by learning based methods. For this purpose, a data consistent artifact reduction (DCAR) method is introduced: First, a prior image is generated from an initial limited angle reconstruction via deep learning as a substitute for missing information. Afterwards, a conventional iterative reconstruction algorithm is applied, integrating the data consistency in the measured angular range and the prior information in the missing angular range. This ensures data integrity in the measured area, while inaccuracies incorporated by the deep learning prior lie only in areas where no information is acquired. The proposed DCAR method achieves significant image quality improvement: for \(120^\circ \) cone-beam limited angle tomography more than \(10\%\) RMSE reduction in noise-free case and more than \(24\%\) RMSE reduction in noisy case compared with a state-of-the-art U-Net based method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Maier, A., Syben, C., Lasser, T., Riess, C.: A gentle introduction to deep learning in medical image processing. Zeitschrift für Medizinische Physik 29(2), 86–101 (2019)

    Article  Google Scholar 

  2. Wang, G., Ye, J.C., Mueller, K., Fessler, J.A.: Image reconstruction is a new frontier of machine learning. IEEE Trans. Image Process. 37(6), 1289–1296 (2018)

    Article  Google Scholar 

  3. Kang, E., Min, J., Ye, J.C.: A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med. Phys. 44(10), e360–e375 (2017)

    Article  Google Scholar 

  4. Chen, H., et al.: Low-dose CT via convolutional neural network. Biomed. Opt. Express 8(2), 679–694 (2017)

    Article  Google Scholar 

  5. Yang, Q., et al.: Low dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 37, 1348–1357 (2018)

    Article  Google Scholar 

  6. Han, Y.S., Yoo, J., Ye, J.C.: Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis. arXiv preprint (2016)

    Google Scholar 

  7. Han, Y., Ye, J.C.: Framing U-Net via deep convolutional framelets: application to sparse-view CT. IEEE Trans. Med. Imaging 37(6), 1418–1429 (2018)

    Article  Google Scholar 

  8. Chen, H., et al.: LEARN: learned experts’ assessment-based reconstruction network for sparse-data CT. IEEE Trans. Med. Imaging 37(6), 1333–1347 (2018)

    Article  Google Scholar 

  9. Gjesteby, L., Yang, Q., Xi, Y., Zhou, Y., Zhang, J., Wang, G.: Deep learning methods to guide CT image reconstruction and reduce metal artifacts. In: Medical Imaging 2017: Physics of Medical Imaging, vol. 10132, p. 101322W. International Society for Optics and Photonics (2017)

    Google Scholar 

  10. Zhang, Y., Yu, H.: Convolutional neural network based metal artifact reduction in X-ray computed tomography. IEEE Trans. Med. Imaging 37(6), 1370–1381 (2018)

    Article  Google Scholar 

  11. Louis, A.K., Törnig, W.: Picture reconstruction from projections in restricted range. Math. Methods Appl. Sci. 2(2), 209–220 (1980)

    Article  MathSciNet  Google Scholar 

  12. Huang, Y., et al.: Restoration of missing data in limited angle tomography based on Helgason-Ludwig consistency conditions. Biomed. Phys. Eng. Express 3(3), 035015 (2017)

    Article  MathSciNet  Google Scholar 

  13. Sidky, E.Y., Pan, X.: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys. Med. Biol. 53(17), 4777 (2008)

    Article  Google Scholar 

  14. Chen, Z., Jin, X., Li, L., Wang, G.: A limited-angle CT reconstruction method based on anisotropic TV minimization. Phys. Med. Biol. 58(7), 2119 (2013)

    Article  Google Scholar 

  15. Huang, Y., Taubmann, O., Huang, X., Haase, V., Lauritsch, G., Maier, A.: Scale-space anisotropic total variation for limited angle tomography. IEEE Trans. Radiat. Plasma Med. Sci. 2(4), 307–314 (2018)

    Article  Google Scholar 

  16. Würfl, T., Ghesu, F.C., Christlein, V., Maier, A.: Deep learning computed tomography. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 432–440. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_50

    Chapter  Google Scholar 

  17. Zhang, H., et al.: Image prediction for limited-angle tomography via deep learning with convolutional neural network. arXiv preprint (2016)

    Google Scholar 

  18. Gu, J., Ye, J.C.: Multi-scale wavelet domain residual learning for limited-angle CT reconstruction. In: Proceedings of Fully 3D, pp. 443–447 (2017)

    Google Scholar 

  19. Huang, Y., Würfl, T., Breininger, K., Liu, L., Lauritsch, G., Maier, A.: Some investigations on robustness of deep learning in limited angle tomography. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 145–153. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_17

    Chapter  Google Scholar 

  20. Würfl, T., et al.: Deep learning computed tomography: learning projection-domain weights from image domain in limited angle problems. IEEE Trans. Med. Imaging 37(6), 1454–1463 (2018)

    Article  Google Scholar 

  21. Bubba, T.A., et al.: Learning the invisible: a hybrid deep learning-shearlet framework for limited angle computed tomography. Inverse Probl. 35(6), 064002 (2019)

    Article  MathSciNet  Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint (2014)

    Google Scholar 

  24. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint (2013)

    Google Scholar 

  25. Yuan, C., He, P., Zhu, Q., Bhat, R., Li, X.: Adversarial examples: attacks and defenses for deep learning. arXiv preprint (2017)

    Google Scholar 

  26. Antun, V., Renna, F., Poon, C., Adcock, B., Hansen, A.C.: On instabilities of deep learning in image reconstruction-does AI come at a cost? arXiv preprint arXiv:1902.05300 (2019)

  27. Syben, C., et al.: Precision learning: reconstruction filter kernel discretization. In: Noo, F. (ed.) Procs CT Meeting, pp. 386–390 (2018)

    Google Scholar 

  28. Maier, A.K., et al.: Learning with known operators reduces maximum training error bounds. arXiv preprint (2019). Paper conditionally accepted in Nature Machine Intelligence

    Google Scholar 

  29. Riess, C., Berger, M., Wu, H., Manhart, M., Fahrig, R., Maier, A.: TV or not TV? That is the question. In: Proceedings Fully 3D, pp. 341–344 (2013)

    Google Scholar 

  30. Frikel, J.: Sparse regularization in limited angle tomography. Appl. Comput. Harmon. Anal. 34(1), 117–141 (2013)

    Article  MathSciNet  Google Scholar 

  31. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. Proc. CVPR 1(2), 3 (2017)

    Google Scholar 

  32. McCollough, C.H., et al.: Low-dose CT for the detection and classification of metastatic liver lesions: results of the 2016 low dose CT grand challenge. Med. Phys. 44(10), e339–e352 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixing Huang .

Editor information

Editors and Affiliations

Ethics declarations

The concepts and information presented in this paper are based on research and are not commercially available.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Y., Preuhs, A., Lauritsch, G., Manhart, M., Huang, X., Maier, A. (2019). Data Consistent Artifact Reduction for Limited Angle Tomography with Deep Learning Prior. In: Knoll, F., Maier, A., Rueckert, D., Ye, J. (eds) Machine Learning for Medical Image Reconstruction. MLMIR 2019. Lecture Notes in Computer Science(), vol 11905. Springer, Cham. https://doi.org/10.1007/978-3-030-33843-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33843-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33842-8

  • Online ISBN: 978-3-030-33843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics