Skip to main content

Part of the book series: Wireless Networks ((WN))

Abstract

In this chapter, we first study the energy efficiency maximization problem when the UAV serve as an aerial user in Sect. 4.1, and then discuss the task completion time minimization problem in a cooperative cellular Internet of UAVs in Sect. 4.2. To improve the communication quality in the cellular Internet of UAVs, we propose UAV-to-everything (U2X) communications in Sect. 4.3. In Sect. 4.4, we investigate the decentralized trajectory design problem for cellular Internet of UAVs. Finally, we present an application of cellular Internet of UAVs for air quality index (AQI) monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The multiple cell scenario is an extension of the single cell scenario, and will be studied in the future.

  2. 2.

    An example of tasks in this model is the geological detection. Specifically, each UAV is arranged to perform a series of tasks, and the geological information of each task is sensed by multiple UAVs.

  3. 3.

    If the UAV trajectory does not detour to the BS, the start point can be considered as the turning point.

  4. 4.

    We consider the UAVs as rotary wing UAVs which can hover in the air for some time slots. The rotary wing UAVs can move with the speed of [0, v max] in any time slot.

  5. 5.

    The value of γ th is set according to the QoS in the specific network.

  6. 6.

    The uplink sum-rate is the sum of U2N and CU transmission rate, and U2U transmission is not included in the uplink sum-rate. Therefore, the objective function does not contain the U2U rate. Instead, we set a minimum threshold for each U2U link to guarantee the success of the U2U transmissions.

  7. 7.

    We assume that the collected sensory data of each UAV in a cycle can be converted into a single sensory data frame with the same length.

  8. 8.

    For example, the UAV’s transmission will interfere with its sensing if the UAV tries to sense electromagnetic signals in the frequency bands which are adjacent to its transmission frequency.

  9. 9.

    Dataset can be found at https://github.com/YyzHarry/AQI_Dataset.

References

  1. L. Gupta, R. Jain, G. Vaszkun, Survey of important issues in UAV communication networks. IEEE Commun. Surv. Tutorials 18(2), 1123–1152 (2015)

    Article  Google Scholar 

  2. J. Wang, C. Jiang, Z. Han, Y. Ren, R.G. Maunder, L. Hanzo, Taking drones to the next level: cooperative distributed unmanned-aerial-vehicular networks for small and mini drones. IEEE Veh. Technol. Mag. 12(3), 73–82 (2017)

    Article  Google Scholar 

  3. N.H. Motlagh, T. Taleb, O. Arouk, Low-altitude unmanned aerial vehicles-based internet of things services: comprehensive survey and future perspectives. IEEE Internet Things J. 3(6), 899–922 (2016)

    Article  Google Scholar 

  4. S. Zhang, H. Zhang, Q. He, K. Bian, L. Song, Joint trajectory and power optimization for UAV relay networks. IEEE Commun. Lett. 22(1), 161–164 (2018)

    Article  Google Scholar 

  5. Y. Yang, Z. Zheng, K. Bian, L. Song, Z. Han, Realtime profiling of fine-grained air quality index distribution using UAV sensing. IEEE Internet Things J. 5(1), 186–198 (2018)

    Article  Google Scholar 

  6. T. Kersnovski, F. Gonzalez, K. Morton, A UAV system for autonomous target detection and gas sensing, in Proceedings of IEEE Aerospace Conference, Big Sky (2017)

    Google Scholar 

  7. B.H.Y. Alsalam, K. Morton, D. Campbell, F. Gonzalez, Autonomous UAV with vision based on-board decision making for remote sensing and precision agriculture, in Proceedings of IEEE Aerospace Conference, Big Sky (2017)

    Google Scholar 

  8. T. Zhao, D. Doll, D. Wang, Y. Chen, A new framework for UAV-based remote sensing data processing and its application in almond water stress quantification, in Proceedings of International Conference on Unmanned Aircraft Systems, Miami (2017)

    Google Scholar 

  9. S. Zhang, H. Zhang, B. Di, L. Song, Joint trajectory and power optimization for UAV sensing over cellular networks. IEEE Commun. Lett. 22(11), 2382–2385 (2018)

    Article  Google Scholar 

  10. M. Thammawichai, S.P. Baliyarasimhuni, E.C. Kerrigan, J. Sousa, Optimizing communication and computation for multi-UAV information gathering applications. IEEE Trans. Aerosp. Electron. Syst. 54(2), 601–615 (2018)

    Article  Google Scholar 

  11. A. Al-Hourani, S. Kandeepan, A. Jamalipour, Modeling air-to-ground path loss for low altitude platforms in urban environments, in IEEE Global Communications Conference, Austin (2014)

    Google Scholar 

  12. G.J. Leishman, Principles of Helicopter Aerodynamics (Cambridge University Press, Cambridge, 2006), pp. 159–193

    Google Scholar 

  13. 3GPP TR 36.777, Enhanced LTE support for aerial vehicles, Release 15, Dec. 2017

    Google Scholar 

  14. B.V.D. Bergh, A. Chiumento, S. Pollin, LTE in the sky: trading of propagation benefits with interference costs for aerial nodes. IEEE Commun. Mag. 54(5), 44–50 (2016)

    Article  Google Scholar 

  15. N.H. Motlagh, M. Bagaa, T. Taleb, UAV-based IoT platform: a crowd surveillance use case. IEEE Commun. Mag. 55(2), 128–134 (2017)

    Article  Google Scholar 

  16. S. Zhang, H. Zhang, B. Di, L. Song, Cellular UAV-to-X communications: design and optimization for multi-UAV networks. IEEE Trans. Wireless Commun. 18(2), 1346–1359 (2019)

    Article  Google Scholar 

  17. J. Shang, Z. Wang, Q. Huang, A robust fusion algorithm for sensor failure. IEEE Signal Process. Lett. 20(8), 755–758 (2013)

    Article  Google Scholar 

  18. J. Chen, J. Li, S. He, Y. Sun, H. Chen, Energy-efficient coverage based on probabilistic sensing model in wireless sensor networks. IEEE Commun. Lett. 14(9), 833–835 (2010)

    Article  Google Scholar 

  19. V.N. Swamy, S. Suri, P. Rigge, M. Weiner, G. Ranade, A. Sahai, B. Nikolic, Cooperative communication for high-reliability low-latency wireless control, in Proceedings of IEEE International Conference on Communications, London (2015)

    Google Scholar 

  20. S. Zhang, H. Zhang, B. Di, L. Song, Cellular cooperative unmanned aerial vehicle networks with sense-and-send protocol. IEEE Internet Things J. 6(2), 1754–1767 (2019)

    Article  Google Scholar 

  21. O.B. Sezer, E. Dogdu, A.M. Ozbayoglu, Context-aware computing, learning, and big data in internet of things: a survey. IEEE Internet Things J. 5(1), 1–27 (2018)

    Article  Google Scholar 

  22. S. Verma, Y. Kawamoto, Z. Fadlullah, H. Nishiyama, N. Kato, A survey on network methodologies for real-time analytics of massive IoT data and open research issues. IEEE Commun. Surv. Tutorials 19(3), 1457–1477 (2017)

    Article  Google Scholar 

  23. V.V. Shakhov, I. Koo, Experiment design for parameter estimation in probabilistic sensing models. IEEE Sens. J. 17(24), 8431–8437 (2017)

    Article  Google Scholar 

  24. A. Chakraborty, R.R. Rout, A. Chakrabarti, S.K. Ghosh, On network lifetime expectancy with realistic sensing and traffic generation model in wireless sensor networks. IEEE Sens. J. 13(7), 2771–2779 (2013)

    Article  Google Scholar 

  25. A. Hossain, S. Chakrabarti, P.K. Biswas, Impact of sensing model on wireless sensor network coverage. IET Wireless Sens. Syst. 2(3), 272–281 (2012)

    Article  Google Scholar 

  26. E.G. Larsson, Optimal OFDMA downlink scheduling under a control signaling cost constraint. IEEE Trans. Commun. 58(10), 2776–2781 (2010)

    Article  Google Scholar 

  27. Y. Zeng, X. Xu, R. Zhang, Trajectory design for completion time minimization in UAV-enabled multicasting. IEEE Trans. Wireless Commun. 17(4), 2233–2246 (2018)

    Article  Google Scholar 

  28. M. Chen, M. Mozaffari, W. Saad, C. Yin, M. Debbah, C.S. Hong, Caching in the sky: proactive deployment of cache-enabled unmanned aerial vehicles for optimized quality-of-experience. IEEE J. Sel. Areas Commun. 35(5), 1046–1061 (2017)

    Article  Google Scholar 

  29. M. Mozaffari, W. Saad, M. Bennis, M. Debbah, Mobile unmanned aerial vehicles (UAVs) for energy-efficient internet of things communications. IEEE Trans. Wireless Commun. 16(11), 7574–7589 (2017)

    Article  Google Scholar 

  30. Y. Zeng, R. Zhang, Energy-efficient UAV communication with trajectory optimization. IEEE Trans. Wireless Commun. 16(6), 3747–3760 (2017)

    Article  Google Scholar 

  31. H. Zhang, Y. Liao, L. Song, D2D-U: device-to-device communications in unlicensed bands for 5G system. IEEE Trans. Wireless Commun. 16(6), 3507–3519 (2017)

    Article  Google Scholar 

  32. A. Al-Hourani, S. Kandeepan, S. Lardner, Optimal LAP altitude for maximum coverage. IEEE Wireless Commun. Lett. 3(6), 569–572 (2014)

    Article  Google Scholar 

  33. D. Athukoralage, I. Guvenc, W. Saad, M. Bennis, Regret based learning for UAV assisted LTE-U/WiFi public safety networks, in Proceedings of IEEE Global Communications Conference, Washington (2016)

    Google Scholar 

  34. 3GPP TS 25.996, Spatial channel model for multiple input multiple output (MIMO) simulations, Release 6, Jun. 2018

    Google Scholar 

  35. M.J. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, 1st edn. (W.H. Freeman, New York, 1979), pp. 50–53

    MATH  Google Scholar 

  36. M. Sipser, Introduction to the Theory of Computation, 3rd edn. (Cengage Learning, Boston, 2012), pp. 225–277

    Google Scholar 

  37. M. Grant, S. Boyd, CVX: MATLAB Software for Disciplined Convex Programming. Version 2.1 (2016). http://cvxr.com/cvx

  38. D.A. Plaisted, Some polynomial and integer divisibility problems are NP-HARD, in Proceedings of Annual Symposium on Foundations of Computer Science, Houston (1976), pp. 264–267

    Google Scholar 

  39. D. Li, X. Sun, Constrained polynomial 0–1 programming, in Nonlinear Integer Programming, 1st edn., chap. 11 (Springer, New York, 2006), pp. 315–348

    Google Scholar 

  40. S. Zhang, B. Di, L. Song, Y. Li, Sub-channel and power allocation for non-orthogonal multiple access relay networks with amplify-and-forward protocol. IEEE Trans. Wireless Commun. 16(4), 2249–2261 (2017)

    Article  Google Scholar 

  41. J. Hu, H. Zhang, L. Song, Reinforcement learning for decentralized trajectory design in cellular UAV networks with sense-and-send protocol. IEEE Internet Things J. 6(4), 6177–6189 (2019)

    Article  Google Scholar 

  42. 3GPP TR 38.901, Study on channel model for frequencies from 0.5 to 100 GHz. Release 14, Dec. 2017

    Google Scholar 

  43. S.O. Rice, Mathematical analysis of random noise. Bell Syst. Tech. J. 23(3), 282–332 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  44. J.I. Marcum, Table of Q functions, Tech. Rep., U.S. Air Force Project RAND Res. Memo. M-339, ASTIA Document AD 1165451, Rand Corporation, Santa Monica (1950)

    Google Scholar 

  45. G. Demange, D. Gale, M. Sotomayor, Multi-item auctions. J. Polit. Econ. 94(4), 863–872 (1986)

    Article  Google Scholar 

  46. R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth, On the Lambert W function. Adv. Comput. Math. 5(1), 329–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  47. R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (MIT Press, Cambridge, 1998)

    MATH  Google Scholar 

  48. E. Yang, D. Gu, Multiagent reinforcement learning for multi-robot systems: a survey. University of Essex Technical Report CSM (2004)

    Google Scholar 

  49. C.J.C.H. Watkins, Learning from delayed rewards, Ph.D. Dissertation, King’s College, Cambridge (1989)

    Google Scholar 

  50. M. Bowling, Multiagent learning in the presence of agents with limitations, Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh (2003)

    Google Scholar 

  51. W. Uther, M. Veloso, Adversarial reinforcement learning, Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh (1997)

    Google Scholar 

  52. C. Claus, C. Boutilier, The dynamics of reinforcement learning in cooperative multiagent systems, in Proceedings Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence, Madison (1998)

    Google Scholar 

  53. T. Jaakkola, M.I. Jordan, S.P. Singh, On the convergence of stochastic iterative dynamic programming algorithms. Neural Comput. 6(6), 1185–1201 (1994)

    Article  MATH  Google Scholar 

  54. S. Singh, M. Kearns, Y. Mansour, Nash convergence of gradient dynamics in general-sum games, in Proceedings of Conference on Uncertainty in Artificial Intelligence, San Francisco (2000)

    Google Scholar 

  55. W. H. Organization, 7 million premature deaths annually linked to air pollution. Air Qual. Climate Change 22(1), 53–59 (2014)

    Google Scholar 

  56. Q. Di, Y. Wang, A. Zanobetti, et al., Air pollution and mortality in the Medicare population. N. Engl. J. Med. 376(26), 2513–2522 (2017)

    Article  Google Scholar 

  57. Y. Li, Y. Zhu, W. Yin, Y. Liu, G. Shi, Z. Han, Prediction of high resolution spatial-temporal air pollutant map from big data sources, in Proceedings of Big Data Computing and Communications, Taiyuan (2015)

    Google Scholar 

  58. B. Zou, J.G. Wilson, F.B. Zhan, Y.N. Zeng, Air pollution exposure assessment methods utilized in epidemiological studies. J. Environ. Monit. 11(3), 475–490 (2009)

    Article  Google Scholar 

  59. Beijing MEMC, Beijing municipal environmental monitoring center (2017). http://www.bjmemc.com.cn/

  60. Y. Cheng, X. Li, Z. Li, S. Jiang, Y. Li, J. Jia, X. Jiang, AirCloud: a cloud-based air-quality monitoring system for everyone, in Proceedings of ACM Conference on Embedded Network Sensor Systems, New York (2014)

    Google Scholar 

  61. D. Hasenfratz, O. Saukh, C. Walser, C. Hueglin, M. Fierz, T. Arn, J. Beutel, L. Thiele, Deriving high-resolution urban air pollution maps using mobile sensor nodes. Pervasive Mob. Comput. 16(2), 268–285 (2015)

    Article  Google Scholar 

  62. N. Nikzad, N. Verma, C. Ziftci, E. Bales, N. Quick, P. Zappi, K. Patrick, S. Dasgupta, I. Krueger, T. Rosing, W. Griswold, CitiSense: improving geospatial environmental assessment of air quality using a wireless personal exposure monitoring system, in Proceedings of ACM Wireless Health, San Diego (2010)

    Google Scholar 

  63. Y. Gao, W. Dong, K. Guo, X. Liu, Y. Chen, X. Liu, J. Bu, C. Chen, Mosaic: a low-cost mobile sensing system for urban air quality monitoring, in Proceedings of IEEE Conference on Computer Communications Workshops, San Francisco (2016)

    Google Scholar 

  64. D. Bisht, S. Tiwari, U. Dumka, A. Srivastava, P. Safai, S. Ghude, D. Chate, P. Rao, K. Ali, T. Prabhakaran, A.S. Panickar, V.K. Soni, S.D. Attri, P. Tunved, R.K. Chakrabarty, P.K. Hopke, Tethered balloon-born and ground-based measurements of black carbon and particulate profiles within the lower troposphere during the foggy period in Delhi, India. Sci. Total Environ. 573(1), 894–905 (2016)

    Article  Google Scholar 

  65. Y. Hu, G. Dai, J. Fan, Y. Wu, H. Zhang, BlueAer: a fine-grained urban PM2.5 3D monitoring system using mobile sensing, in Proceedings of IEEE Conference on Computer Communications, San Francisco (2016)

    Google Scholar 

  66. T.N. Quang, C. He, L. Morawska, L.D. Knibbs, M. Falk, Vertical particle concentration profiles around urban office buildings. Atmos. Chem. Phys. 12(11), 5017–5030 (2012)

    Article  Google Scholar 

  67. F.M. Rubinoa, L. Floridiaa, M. Tavazzania, S. Fustinonia, R. Giampiccoloa, A. Colombia, Height profile of some air quality markers in the urban atmosphere surrounding 100m tower building. Atmos. Environ. 32(20), 3569–3580 (1998)

    Article  Google Scholar 

  68. C. Borrego, H. Martins, O. Tchepel, L. Salmim, A. Monteiro, A.I. Miranda, How urban structure can affect city sustainability from an air quality perspective. Environ. Model. Softw. 21(4), 461–467 (2006)

    Article  Google Scholar 

  69. Y. Zheng, F. Liu, H. Hsieh, U-air: when urban air quality inference meets big data, in Proceedings of ACM Conference on Knowledge Discovery and Data Mining, Chicago (2013)

    Google Scholar 

  70. H.X. Xu, G. Li, S.L. Yang, X. Xu, Modeling and simulation of Haze process based on Gaussian model, in Proceedings of International Computer Conference on Wavelet Active Media Technology and Information Processing, Chengdu (2014)

    Google Scholar 

  71. M. Cameletti, R. Ignaccolo, S. Bande, Comparing spatio-temporal models for particulate matter in Piemonte. Environmetrics 22(8), 985–996 (2011)

    Article  MathSciNet  Google Scholar 

  72. C. Zhao, M. Heeswijk, J. Karhunen, Air quality forecasting using neural networks, in Proceedings of IEEE Symposium Series on Computational Intelligence Athens (2016)

    Google Scholar 

  73. M. Cai, Y. Yin, M. Xie, Prediction of hourly air pollutant concentrations near urban arterials using artificial neural network approach. Transp. Res. Part D: Transp. Environ. 14(1), 32–41 (2009)

    Article  Google Scholar 

  74. M.W. Gardner, S.R. Dorling, Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmos. Environ. 33(5), 709–719 (1999)

    Article  Google Scholar 

  75. M. Dedovic, S. Avdakovic, I. Turkovic, N. Dautbasic, T. Konjic, Forecasting PM10 concentrations using neural networks and system for improving air quality, in Proceedings of XI International Symposium on Telecommunication, Sarajevo (2016)

    Google Scholar 

  76. Beijing EPB, Beijing municipal environmental protection bureau (2017). http://www.bjepb.gov.cn/

  77. Plantower, Technology laser PM2.5 sensor, air quality sensor. http://www.plantower.com/en/

  78. Da-Jiang Innovations Science and Technology Co., Ltd. (DJI), Phantom 3 professional. https://www.dji.com/cn/phantom-3-pro

  79. Y. Yang, Z. Zheng, K. Bian, Y. Jiang, L. Song, Z. Han, Arms: a fine-grained 3D AQI realtime monitoring system by UAV, in Proceedings of IEEE Global Communication Conference, Singapore (2017)

    Google Scholar 

  80. R.V. Hogg, A.T. Craig, Introduction to Mathematical Statistics, 5th edn. (Prentice Hall, Upper Saddle River, 1995)

    Google Scholar 

  81. M. Cameletti, F. Lindgren, D. Simpson, H. Rue, Spatio-temporal modeling of particulate matter concentration through the SPDE approach. Adv. Stat. Anal. 97(2), 109–131 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  82. D.R. Middleton, Modelling air pollution transport and deposition, in IEE Colloquium on Pollution of Land, Sea and Air: An Overview for Engineers, London (1995)

    Google Scholar 

  83. J.M. Stockie, The mathematics of atmospheric dispersion modeling. SIAM Rev. 53(2), 349–372 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  84. S. Brusca, F. Famoso, R. Lanzafame, S. Mauro, A. Marino Cugno Garrano, P. Monforte, Theoretical and experimental study of Gaussian plume model in small scale system. Energy Procedia 101(1), 58–65 (2016)

    Article  Google Scholar 

  85. F. Tang, B. Mao, Z. Fadlullah, N. Kato, O. Akashi, T. Inoue, K. Mizutani, On removing routing protocol from future wireless networks: a real-time deep learning approach for intelligent traffic control. IEEE Wirelesss Mag. 25(1), 154–160 (2018)

    Article  Google Scholar 

  86. A. Al-Molegi, M. Jabreel, B. Ghaleb, STF-RNN: space time features-based recurrent neural network for predicting people next location, in Proceedings of IEEE Symposium Series on Computational Intelligence, Athens (2016)

    Google Scholar 

  87. S.M. Carroll, B.W. Dickinson, Construction of neural nets using the radon transform, in Proceedings IEEE International Joint Conference on Neural Networks, Washington (1989)

    Google Scholar 

  88. G. Cybenko, Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2(4), 303–314 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  89. K. Funahashi, On the approximate realization of continuous mapping by neural networks. Neural Netw. 2(3), 183–192 (1989)

    Article  Google Scholar 

  90. D.P. Bertsekas, Nonlinear Programming (Athena Scientific, Belmont, 1999), pp. 1–60

    Google Scholar 

  91. R. Penrose, A generalized inverse for matrices. Math. Proc. Camb. Philos. Soc. 51(3), 406–413 (1955)

    Article  MATH  Google Scholar 

  92. R. MacAusland, The moore-penrose inverse and least squares, in Math 420: Advanced Topics in Linear Algebra (2014)

    Google Scholar 

  93. D. Goldberg, R. Lingle, Alleles, loci, and the traveling salesman problem, in Proceedings of International Conference on Genetic Algorithms and Their Applications, Hillsdale (1985)

    Google Scholar 

  94. C. De Boor, A Practical Guide to Splines (Springer, New York, 1978)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, H., Song, L., Han, Z. (2020). Cellular Assisted UAV Sensing. In: Unmanned Aerial Vehicle Applications over Cellular Networks for 5G and Beyond. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-33039-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33039-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33038-5

  • Online ISBN: 978-3-030-33039-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics