Skip to main content

Brain MR Image Segmentation in Small Dataset with Adversarial Defense and Task Reorganization

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11861))

Included in the following conference series:

Abstract

Medical image segmentation is challenging especially in dealing with small dataset of 3D MR images. Encoding the variation of brain anatomical structures from individual subjects cannot be easily achieved, which is further challenged by only a limited number of well labeled subjects for training. In this study, we aim to address the issue of brain MR image segmentation in small dataset. First, concerning the limited number of training images, we adopt adversarial defense to augment the training data and therefore increase the robustness of the network. Second, inspired by the prior knowledge of neural anatomies, we reorganize the segmentation tasks of different regions into several groups in a hierarchical way. Third, the task reorganization extends to the semantic level, as we incorporate an additional object-level classification task to contribute high-order visual features toward the pixel-level segmentation task. In experiments we validate our method by segmenting gray matter, white matter, and several major regions on a challenge dataset. The proposed method with only seven subjects for training can achieve 84.46% of Dice score in the onsite test set.

This work was supported by the National Key Research and Development Program of China (2018YFC0116400) and STCSM (19QC1400600, 17411953300).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://mrbrains18.isi.uu.nl/.

References

  1. Dolz, J., Gopinath, K., Yuan, J., Lombaert, H., Desrosiers, C., Ayed, I.B.: HyperDense-Net: a hyper-densely connected CNN for multi-modal image segmentation (2018)

    Google Scholar 

  2. Roulet, N., Slezak, D.F., Ferrante, E.: Joint learning of brain lesion and anatomy segmentation from heterogeneous datasets (2019)

    Google Scholar 

  3. Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using convolutional neural networks with test-time augmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 61–72. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_6

    Chapter  Google Scholar 

  4. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  5. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale. arXiv preprint arXiv:1611.01236 (2016)

  6. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  7. Milletari, F., Navab, N., Ahmadi, S.-A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  8. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  9. Gibson, E., et al.: NiftyNet: a deep-learning platform for medical imaging. Comput. Methods Programs Biomed. 158, 113–122 (2018)

    Article  Google Scholar 

  10. Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 178–190. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_16

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dinggang Shen or Qian Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ren, X., Zhang, L., Wei, D., Shen, D., Wang, Q. (2019). Brain MR Image Segmentation in Small Dataset with Adversarial Defense and Task Reorganization. In: Suk, HI., Liu, M., Yan, P., Lian, C. (eds) Machine Learning in Medical Imaging. MLMI 2019. Lecture Notes in Computer Science(), vol 11861. Springer, Cham. https://doi.org/10.1007/978-3-030-32692-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32692-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32691-3

  • Online ISBN: 978-3-030-32692-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics