Skip to main content

Alzheimer’s Disease Therapeutic Approaches

  • Conference paper
  • First Online:
GeNeDis 2018

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1195))

Abstract

Alzheimer’s disease (AD) was first described and diagnosed by Dr. Alois Alzheimer in 1906 (Hippius and Neundorfer, Dialogues Clin Neurosc 5:101–108, 2003). According to World Health Organization (WHO), AD is the most common cause of dementia, accounting for as many as 60–70% of senile dementia cases and affecting 47.5 million people worldwide (data from 2015) (Dementia Fact Sheet No 362. http://who.int/mediacentre/factsheets/fs362/en/). The median survival time after the onset of dementia ranges from 3.3 to 11.7 years (Todd et al. Int J Geriatr Psychiatry 28:1109–1124, 2013). AD is characterized as a severe, chronic, incurable, and progressive neurodegenerative disorder, associated with memory loss and cognition impairment accompanied by abnormal behavior and personality changes (Godyn et al. Pharmacol Rep 68:127–138, 2016). AD is characterized by neuronal death, which usually correlates with the appearance of key neuropathological changes, including acetylcholine deficiency, glutamate excitotoxicity, extracellular deposition of β-amyloid (Aβ plaques), intracellular neurofibrillary tangles by hyperphosphorylated tau protein deposits, neuroinflammation, and widespread neuronal loss (Godyn et al. Pharmacol Rep 68:127–138, 2016; Graham et al. Annu Rev. Med 68:413–430, 2017). The discovery of the degeneration of cholinergic neurons and the reduction of acetylcholine levels in postmortem studies of patients resulted in the use of drugs that leads to the increase of acetylcholine levels in brain (Dubois et al. Lacet Neurol 13:614–629, 2014). At present there is no preventative or curative treatment that interferes with the development of the disease. However, in recent years progress was made in the development of cholinergic drugs which have a positive effect on disease progression. Nowadays, specific drugs that can inhibit the enzyme that degrades acetylcholine are used. The development of new effective drugs involves a difficult and time-consuming process, accompanied by a very high failure rate. In the absence of effective therapies, the estimated number of people with dementia will reach 115 to 131, five million by 2050 (Dubois et al. Lacet Neurol 13:614–629, 2014; Cummings et al. Alzheimers Res Ther 6:37, 2014). Novel therapies and new targets required for developing more effective drugs for the treatment of AD patients are urgently needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anand R, Gill KD, Mahdi AA (2014) Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology 76:27–50

    Article  CAS  PubMed  Google Scholar 

  • Anisuzzaman AS, Uwada J, Masuoka T, Yoshiki H, Nishio M, Ikegaya Y, Takahashi N, Matsuki N, Fujibayashi Y, Yonekura Y, Momiyama T, Muramatsu I (2013) Novel contribution of cell surface and intracellular M1- muscarinic acetylcholine receptors to synaptic plasticity in hippocampus. J Neurochem 126(3):360–371

    Article  CAS  PubMed  Google Scholar 

  • Aracava Y, Pereira EF, Maelicke A, Albuquerque EX (2005) Memantine blocks alpha7∗ nicotinic acetylcholine receptors more potently than n-methyl-D-aspartate receptors in rat hippocampal neurons. J Pharmacol Exp Ther 312:1195–1205

    Article  CAS  PubMed  Google Scholar 

  • Atri A et al (2013a) Memantine in patients with Alzheimer’s disease receiving donepezil: new analyses of efficacy and safety for combination therapy. Alzheimers Res Ther 5:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atri A, Molinuevo JL, Lemming O, Wirth Y, Pulte I, Wilkinson D (2013b) Memantine in patients with Alzheimer’s disease receiving donepezil: new analyses of efficacy and safety for combination therapy. Alzheimers Res Ther 5:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakchine S, Loft H (2008) Memantine treatment in patients with mild to moderate Alzheimer’s disease: results of a randomised, double-blind, placebo-controlled 6-month study. J Alzheimers Dis 13:97–107

    Article  CAS  PubMed  Google Scholar 

  • Beal MF (1992) Mechanisms of excitotoxicity in neurologic diseases. FASEB J 6:3338–3344

    Article  CAS  PubMed  Google Scholar 

  • Benowitz NL, Kuyt F, Jacob P 3rd, Jones RT, Osman AL (1983) Cotinine disposition and effects. Clin Pharmacol Ther 34:604–611

    Article  CAS  PubMed  Google Scholar 

  • Berger-Sweeney J (2003) The cholinergic basal forebrain system during development and its influence on cognitive processes: important questions and potential answers. Neurosci Biobehav Rev 27:401–411

    Article  CAS  PubMed  Google Scholar 

  • Birks J (2006) Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev (1):CD005593

    Google Scholar 

  • Bowman ER, Mc KH Jr (1962) Studies on the metabolism of (−)-cotinine in the human. J Pharmacol Exp Ther 135:306–311

    CAS  PubMed  Google Scholar 

  • Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3:186–191

    Article  PubMed  Google Scholar 

  • Bruel-Jungerman E, Lucassen PJ, Francis F (2011) Cholinergic influences on cortical development and adult neurogenesis. Behav Brain Res 221:379–388

    Article  CAS  PubMed  Google Scholar 

  • Buisson B, Bertrand D (1998) Open-channel blockers at the human alpha4beta2neuronal nicotinic acetylcholine receptor. Mol Pharmacol 53:555–563

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA, Pocernich CB (2003) The glutamatergic system and Alzheimer’s disease: therapeutic implications. CNS Drugs 17:641–652

    Article  CAS  PubMed  Google Scholar 

  • Collina S, Gaggeri R, Marra A, Bassi A, Negrinotti S, Negri F, Rossi D (2013) Sigma receptor modulators: a patent review. Expert Opin Ther Pat 23:597–613

    Article  CAS  PubMed  Google Scholar 

  • Coyle J, Kershaw P (2001) Galantamine, a cholinesterase inhibitor that allosterically modulates nicotinic receptors: effects on the course of Alzheimer’s disease. Biol Psychiatry 49:289–299

    Article  CAS  PubMed  Google Scholar 

  • Cummings J et al (2014) Drug development in Alzheimer’s disease: the path to 2025. Alzheimers Res Ther 6(4):37

    Article  PubMed  PubMed Central  Google Scholar 

  • Dantoine T, Auriacombe S, Sarazin M, Becker H, Pere JJ, Bourdeix I (2006) Rivastigmine monotherapy and combination therapy with memantine in patients with moderately severe Alzheimer’s disease who failed to benefit from previous cholinesterase inhibitor treatment. Int J Clin Pract 60:110–118

    Article  CAS  PubMed  Google Scholar 

  • Dementia Fact Sheet No 362. http://who.int/mediacentre/factsheets/fs362/en/

  • Dinamarca MC, Rios JA, Inestrosa NC (2012) Postsynaptic receptors for amyloidbetaoligomers as mediators of neuronal damage in Alzheimer’s disease. Front Physiol 3:464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drever BD, Riedel G, Platt B (2011) The cholinergic system and hippocampal plasticity. Behav Brain Res 221:505–514

    Article  CAS  PubMed  Google Scholar 

  • Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, Dekosky ST, Gauthier S, Selkoe D, Baterman R et al (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lacet Neurol 13:614–629

    Google Scholar 

  • Echeverria V, Zeitlin R (2012) Cotinine: a potential new therapeutic agent against Alzheimer’s disease. CNS Neurosci Ther 18:517–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Echeverria V, Zeitlin R, Burgess S, Patel S, Barman A, Thakur G, Mamcarz M, Wang L, Sattelle DB, Kirschner DA, Mori T, Leblanc RM, Prabhakar R, Arendash GW (2011) Cotinine reduces amyloid-beta aggregation and improves memory in Alzheimer’s disease mice. J Alzheimers Dis 24:817–835

    Article  CAS  PubMed  Google Scholar 

  • Farlow M, Gracon S, Hershey L, Lewis SC, DolanUreno J (1992) A controlled trial of tacrine in Alzheimer disease. J Am Med Assoc 268:2523–2529

    Article  CAS  Google Scholar 

  • Farrimond LE, Roberts E, McShane R (2012) Memantine and cholinesterase inhibitor combination therapy for Alzheimer’s disease: a systematic review. BMJ Open 2. https://doi.org/10.1136/bmjopen-2012-000917

  • Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A, Mathers C, Menezes PR, Rimmer E, Scazufca M (2005) Global prevalence of dementia: a Delphiconsensus study. Lancet 366:2112–2117

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher A (2008) Cholinergic treatments with emphasis on m1 muscarinic agonists as potential disease-modifying agents for Alzheimer’s disease. Neurotherapeutics 5:433–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher A (2012) Cholinergic modulation of amyloid precursor protein processing with emphasis on M1 muscarinic receptor: perspectives and challenges in treatment of Alzheimer’s disease. J Neurochem 120(Suppl. 1):22–33

    Article  CAS  PubMed  Google Scholar 

  • Fisher A, Brandeis R, Bar-Ner RH, Kliger-Spatz M, Natan N, Sonego H, Marcovitch I, Pittel Z (2002) AF150(S) and AF267B: M1 muscarinic agonists as innovative therapies for Alzheimer’s disease. J Mol Neurosci 19:145–153

    Article  CAS  PubMed  Google Scholar 

  • Gilling KE, Jatzke C, Hechenberger M, Parsons CG (2009) Potency, voltage dependency, agonist concentration-dependency, blocking kinetics and partial untrapping of the uncompetitive N-methyl-D-aspartate (NMDA) channel blocker memantine at human NMDA (GluN1/GluN2A) receptors. Neuropharmacology 56:866–875

    Article  CAS  PubMed  Google Scholar 

  • Godyn J, Jonczyk J, Panec D, Malawska B (2016) Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol Rep 68:127–138

    Article  CAS  PubMed  Google Scholar 

  • Graham WV, Bonito-Oliva A, Sakmar TP (2017) Update on Alzheimer’s disease. Therapy and prevention strategies. Annu Rev Med 68:413–430

    Article  CAS  PubMed  Google Scholar 

  • Hellstrom-Lindahl E, Moore H, Nordberg A (2000) Increased levels of tau protein in SH-SY5Y cells after treatment with cholinesterase inhibitors and nicotinic agonists. J Neurochem 74:777–784

    Article  CAS  PubMed  Google Scholar 

  • Hellweg R, Wirth Y, Janetzky W, Hartmann S (2012) Efficacy of memantine in delaying clinical worsening in Alzheimer’s disease (AD): responder analyses of nine clinical trials with patients with moderate to severe AD. Int J GeriatrPsychiatry 27:651–656

    Google Scholar 

  • Hernandez CM, Dineley KT (2012) Alpha7 nicotinic acetylcholine receptors in Alzheimer’s disease: neuroprotective, neurotrophic or both? Curr Drug Targets 13:613–622

    Article  CAS  PubMed  Google Scholar 

  • Hippius H, Neundorfer G (2003) The discovery of Alzheimer’s disease. Dialogues Clin Neurosci 5:101–108

    Article  PubMed  PubMed Central  Google Scholar 

  • Howard R, McShane R, Lindesay J, Ritchie C, Baldwin A, Barber R, Burns A, Dening T, Findlay D, Holmes C, Hughes A, Jacoby R, Jones R, McKeith I, Macharouthu A, O’Brien J, Passmore P, Sheehan B, Juszczak E, Katona C, Hills R, Knapp M, Ballard C, Brown R, Banerjee S, Onions C, Griffin M, Adams J, Gray R, Johnson T, Bentham P, Phillips P (2012) Donepezil and memantine for moderate-to-severe Alzheimer’s disease. N Engl J Med 366:893–903

    Article  CAS  PubMed  Google Scholar 

  • Ikonomovic MD, Wecker L, Abrahamson EE, Wuu J, Counts SE, Ginsberg SD, Mufson EJ, Dekosky ST (2009) Cortical alpha7 nicotinic acetylcholine receptor and beta-amyloid levels in early Alzheimer disease. Arch Neurol 66:646–651

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia JY, Zhao QH, Liu Y, Gui YZ, Liu GY, Zhu DY, Yu C, Hong Z (2013) Phase I study on the pharmacokinetics and tolerance of ZT-1, a prodrug of huperzine a, for the treatment of Alzheimer’s disease. Acta Pharmacol Sin 34(7):976–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kihara T, Shimohama S, Sawada H, Honda K, Nakamizo T, Shibasaki H, Kume T, Akaike A (2001) Alpha 7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block a beta-amyloid-induced neurotoxicity. J Biol Chem 276:13541–13546

    Article  CAS  PubMed  Google Scholar 

  • Kivipelto M, Helkala EL, Laakso MP, Hanninen T, Hallikainen M, Alhainen K, Soininen H, Tuomilehto J, Nissinen A (2001) Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal population based study. BMJ 322:1447–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klugman A, Naughton DP, Isaac M, Shah I, Petroczi A, Tabet N (2012) Antioxidant enzymatic activities in Alzheimer’s disease: the relationship to acetylcholinesterase inhibitors. J Alzheimers Dis 30:467–474

    Article  CAS  PubMed  Google Scholar 

  • Kurz A, Perneczky R (2011) Novel insights for the treatment of Alzheimer’s disease. Prog Neuro-Psychopharmacol Biol Psychiatry 35(2):373–379

    Article  CAS  Google Scholar 

  • Lahmy V, Meunier J, Malmstrom S, Naert G, Givalois L, Kim SH, Villard V, Vamvakides A, Maurice T (2013) Blockade of tau hyperphosphorylation and abeta generation by the aminotetrahydrofuran derivative ANAVEX2-73, a mixed muscarinic and sigma receptor agonist, in a nontransgenic mouse model of Alzheimer’s disease. Neuropsychopharmacology 38(9):1706–1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee RH, Tseng TY, Wu CY, Chen PY, Chen MF, Kuo JS, Lee TJ (2012) Memantine inhibits alpha3beta2-nAChRs-mediated nitrergic neurogenic vasodilation in porcine basilar arteries. PLoS One 7:40326

    Article  CAS  Google Scholar 

  • Lefevre G, Sedek G, Jhee SS, Leibowitz MT, Huang HL, Enz A, Maton S, Ereshefsky L, Pommier F, Schmidli H, Appel-Dingemanse S (2008) Pharmacokinetics and pharmacodynamics of the novel daily rivastigmine transdermal patch compared with twice-daily capsules in Alzheimer’s disease patients. Clin Pharmacol Ther 83:106–114

    Article  CAS  PubMed  Google Scholar 

  • Lopez OL, Becker JT, Wahed AS, Saxton J, Sweet RA, Wolk DA, Klunk W, Dekosky ST (2009) Long-term effects of the concomitant use of memantine with cholinesterase inhibition in Alzheimer disease. J Neurol Neurosurg Psychiatry 80:600–607

    Article  CAS  PubMed  Google Scholar 

  • Maelicke A, Hoeffle-Maas A, Ludwig J, Maus A, Samochocki M, Jordis U, Koepke AK (2010) Memogain is a galantamine pro-drug having dramatically reduced adverse effects and enhanced efficacy. J Mol Neurosci 40:135–137

    Article  CAS  PubMed  Google Scholar 

  • Maskell PD, Speder P, Newberry NR, Bermudez I (2003) Inhibition of human alpha 7 nicotinic acetylcholine receptors by open channel blockers of N-methyl- D-aspartate receptors. Br J Pharmacol 140:1313–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McShane R, Areosa Sastre A, Minakaran N (2006) Memantine for dementia. Cochrane Database Syst Rev:CD003154

    Google Scholar 

  • Medeiros R, Kitazawa M, Caccamo A, Baglietto-Vargas D, Estrada-Hernandez T, Cribbs DH, Fisher A, LaFerla FM (2011) Loss of muscarinic M1 receptor exacerbates Alzheimer’s disease-like pathology and cognitive decline. Am J Pathol 179:980–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miguel-Hidalgo JJ, Paul IA, Wanzo V, Banerjee PK (2012) Memantine prevents cognitive impairment and reduces Bcl-2 and caspase 8 immunoreactivity in rats injected with amyloid beta1-40. Eur J Pharmacol 692:38e45

    Google Scholar 

  • Moss DE, Berlanga P, Hagan MM, Sandoval H, Ishida C (1999) Methanesulfonyl fluoride (MSF): a double-blind, placebo-controlled study of safety and efficacy in the treatment of senile dementia of the Alzheimer type. Alzheimer Dis Assoc Disord 13:20–25

    Article  CAS  PubMed  Google Scholar 

  • Moss DE, Fariello RG, Sahlmann J, Sumaya I, Pericle F, Braglia E (2013) A randomized phase I study of methanesulfonyl fluoride, an irreversible cholinesterase inhibitor, for the treatment of Alzheimer’s disease. Br J Clin Pharmacol 75:1231–1239

    Article  CAS  PubMed  Google Scholar 

  • Motawaj M, Burban A, Davenas E, Arrang JM (2011) Activation of brain histaminergic neurotransmission: a mechanism for cognitive effects of memantine in Alzheimer’s disease. J Pharmacol Exp Ther 336:479–487

    Article  CAS  PubMed  Google Scholar 

  • Mousavi M, Hellstrom-Lindahl E (2009) Nicotinic receptor agonists and antagonists increase sAPPalpha secretion and decrease Abeta levels in vitro. Neurochem Int 54:237–244

    Article  CAS  PubMed  Google Scholar 

  • Muayqil T, Camicioli R (2012) Systematic review and meta-analysis of combination therapy with cholinesterase inhibitors and memantine in Alzheimer’s disease and other dementias. Dement Geriatr Cogn Dis Extra 2:546–572

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakaya K, Nakagawasai O, Arai Y, Onogi H, Sato A, Niijima F, Tan-No K, Tadano T (2011) Pharmacological characterizations of memantine-induced disruption of prepulse inhibition of the acoustic startle response in mice: involvement of dopamine D2 and 5-HT2A receptors. Behav Brain Res 218:165–173

    Article  CAS  PubMed  Google Scholar 

  • Ni R, Marutle A, Nordberg A (2013) Modulation of alpha7 nicotinic acetylcholine receptor and fibrillar amyloid-beta interactions in Alzheimer’s disease brain. J Alzheimers Dis 33:841–851

    Article  CAS  PubMed  Google Scholar 

  • Nitsch RM, Deng M, Tennis M, Schoenfeld D, Growdon JH (2000) The selective muscarinic M1 agonist AF102B decreases levels of total Abeta in cerebrospinal fluid of patients with Alzheimer’s disease. Ann Neurol 48:913–918

    Article  CAS  PubMed  Google Scholar 

  • Novelli A, Reilly JA, Lysko PG, Henneberry RC (1988) Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res 451:205–212

    Article  CAS  PubMed  Google Scholar 

  • O’Brien J, Eagger S, Levy R (1991) Effects of tetrahydroaminoacridine on liver function in patients with Alzheimer’s disease. Age Ageing 20:121–131

    Google Scholar 

  • Parnetti L, Amici S, Lanari A, Romani C, Antognelli C, Andreasen N, Minthon L, Davidsson P, Pottel H, Blennow K, Gallai V (2002) Cerebrospinal fluid levels of biomarkers and activity of acetylcholinesterase (AChE) and butyrylcholinesterase in AD patients before and after treatment with different AChE inhibitors. Neurol Sci 23(Suppl. 2):S95–S96

    Article  PubMed  Google Scholar 

  • Parri RH, Dineley TK (2010) Nicotinic acetylcholine receptor interaction with beta-amyloid: molecular, cellular, and physiological consequences. Curr Alzheimer Res 7:27–39

    Article  CAS  PubMed  Google Scholar 

  • Parsons CG, Danysz W, Dekundy A, Pulte I (2013) Memantine and cholinesterase inhibitors: complementary mechanisms in the treatment of Alzheimer’s disease. Neurotox Res. http://dx.doi.org/07/s12640-013-9398-z

  • Peskind ER, Potkin SG, Pomara N, Ott BR, Graham SM, Olin JT, McDonald S (2006) Memantine treatment in mild to moderate Alzheimer disease: a 24-week randomized, controlled trial. Am J Geriatr Psychiatry 14:704–715

    Article  PubMed  Google Scholar 

  • Porsteinsson AP, Grossberg GT, Mintzer J, Olin JT, Memantine MEM-MD-12 Study Group (2008a) Memantine treatment in patients with mild to moderate Alzheimer’s disease already receiving a cholinesterase inhibitor: a randomized, double-blind, placebo-controlled trial. Curr Alzheimer Res 5:83–89

    Article  CAS  PubMed  Google Scholar 

  • Porsteinsson AP, Grossberg GT, Mintzer J, Olin JT (2008b) Memantine treatment in patients with mild to moderate Alzheimer’s disease already receiving a cholinesterase inhibitor: a randomized, double-blind, placebo-controlled trial. Curr Alzheimer Res 5:83–89

    Article  CAS  PubMed  Google Scholar 

  • Prickaerts J, van Goethem NP, Chesworth R, Shapiro G, Boess FG, Methfessel C, Reneerkens OA, Flood DG, Hilt D, Gawryl M, Bertrand S, Bertrand D, Konig G (2012) EVP-6124, a novel and selective alpha7 nicotinic acetylcholine receptor partial agonist, improves memory performance by potentiating the acetylcholine response of alpha7 nicotinic acetylcholine receptors. Neuropharmacology 62:1099–1110

    Article  CAS  PubMed  Google Scholar 

  • Rafii MS, Walsh S, Little JT, Behan K, Reynolds B, Ward C, Jin S, Thomas R, Aisen PS (2011) A phase II trial of huperzine a in mild to moderate Alzheimer disease. Neurology 76:1389–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez-Bermudez J (2012) Alzheimer’s disease: critical notes on the history of a medical concept. Arch Med Res 43(8):595–599

    Article  PubMed  Google Scholar 

  • Rammes G, Rupprecht R, Ferrari U, Zieglgansberger W, Parsons CG (2001) The N-methyl-D-aspartate receptor channel blockers memantine, MRZ 2/579 and other amino-alkyl-cyclohexanes antagonise 5-HT(3) receptor currents in cultured HEK-293 and N1E-115 cell systems in a non-competitive manner. Neurosci Lett 306:81–84

    Article  CAS  PubMed  Google Scholar 

  • Rammes G, Danysz W, Parsons CG (2008) Pharmacodynamics of memantine: an update. Curr Neuropharmacol 6:55–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid PR, Bridges TM, Sheffler DJ, Cho HP, Lewis LM, Days E, Daniels JS, Jones CK, Niswender CM, Weaver CD, Conn PJ, Lindsley CW, Wood MR (2011) Discovery and optimization of a novel, selective and brain penetrant M1 positive allosteric modulator (PAM): the development of ML169, an MLPCN probe. Bioorg Med Chem Lett 21:2697–2701

    Article  CAS  PubMed  Google Scholar 

  • Revett TJ, Baker GB, Jhamandas J, Kar S (2013a) Glutamate system, amyloid peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. J Psychiatry Neurosci 38:6–23

    Article  PubMed  PubMed Central  Google Scholar 

  • Revett TJ, Baker GB, Jhamandas J, Kar S (2013b) Glutamate system, amyloid ss peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. J Psychiatry Neurosci 38:6–23

    Article  PubMed  PubMed Central  Google Scholar 

  • Riepe MW, Adler G, Ibach B, Weinkauf B, Tracik F, Gunay I (2007) Domain specific improvement of cognition on memantine in patients with Alzheimer’s disease treated with rivastigmine. Dement Geriatr Cogn Disord 23:301–306

    Article  CAS  PubMed  Google Scholar 

  • Rogers SL, Doody RS, Pratt RD, Ieni JR (2000) Long-term efficacy and safety of donepezil in the treatment of Alzheimer’s disease: final analysis of a US multicentre open-label study. Eur Neuropsychopharmacol 10:195–203

    Article  CAS  PubMed  Google Scholar 

  • Schliebs R, Arendt T (2006) The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J Neural Transm 113:1625–1644

    Article  CAS  PubMed  Google Scholar 

  • Schneider LS, Dagerman KS, Higgins JP, McShane R (2011) Lack of evidence for the efficacy of memantine in mild Alzheimer disease. Arch Neurol 68:991–998

    Article  PubMed  Google Scholar 

  • Silvestrelli G, Lanari A, Parnetti L, Tomassoni D, Amenta F (2006) Treatment of Alzheimer’s disease: from pharmacology to a better understanding of disease pathophysiology. Mech Ageing Dev 127(2):148–157

    Article  CAS  PubMed  Google Scholar 

  • Slotkin TA, Seidler FJ, Crain BJ, Bell JM, Bissette G, Nemeroff CB (1990) Regulatory changes in presynaptic cholinergic function assessed in rapid autopsy material from patients with Alzheimer disease: implications for etiology and therapy. Proc Natl Acad Sci U S A 87:2452–2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tariot PN, Farlow MR, Grossberg GT, Graham SM, McDonald S, Gergel I, Memantine Study Group (2004) Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 291:317–324

    Article  CAS  PubMed  Google Scholar 

  • Todd S, Barr S, Roberts M, Passmore AP (2013) Survival in dementia and predictors of mortality: a review. Int J Geriatr Psychiatry 28:1109–1124

    PubMed  Google Scholar 

  • Toyohara J, Hashimoto K (2010) Alpha7 nicotinic receptor agonists: potential therapeutic drugs for treatment of cognitive impairments in schizophrenia and Alzheimer’s disease. Open Med Chem J 4:37–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace TL, Bertrand D (2013) Importance of the nicotinic acetylcholine receptor system in the prefrontal cortex. Biochem Pharmacol 85(12):1713–1720

    Article  CAS  PubMed  Google Scholar 

  • Watkins PB, Zimmerman HJ, Knapp MJ, Gracon SI, Lewis KW (1994) Hepatotoxic effects of tacrine administration in patients with Alzheimer’s disease. JAMA 271:992–998

    Article  CAS  PubMed  Google Scholar 

  • Winblad B, Grossberg G, Frolich L, Farlow M, Zechner S, Nagel J, Lane R (2007) IDEAL: a 6-month, double-blind, placebo-controlled study of the first skin patch for Alzheimer disease. Neurology 69:S14–S22

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Yan J, Zhou P, Li J, Gao H, Xia Y, Wang Q (2012) Neurotransmitter receptors and cognitive dysfunction in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 97:1–13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang HY, Yan H, Tang XC (2008) Non-cholinergic effects of huperzine a: beyond inhibition of acetylcholinesterase. Cell Mol Neurobiol 28:173–183

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Revi, M. (2020). Alzheimer’s Disease Therapeutic Approaches. In: Vlamos, P. (eds) GeNeDis 2018. Advances in Experimental Medicine and Biology, vol 1195. Springer, Cham. https://doi.org/10.1007/978-3-030-32633-3_15

Download citation

Publish with us

Policies and ethics