Skip to main content

Nutritional Lipidomics in Alzheimer’s Disease

  • Conference paper
  • First Online:
GeNeDis 2018

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1195))

Abstract

Lipids constitute almost 60% of the brain’s dry weight, and they are thought to be involved in inflammation, neurotransmission and synaptic plasticity. The brain mostly contains sphingolipids, glycerophospholipids and cholesterol which are abundant in myelin and neuronal membranes. The recent rise of the promising area of lipidomic data can be used as a diagnosing tool at the early stages of Alzheimer’s disease allowing novel therapeutic targets. In this review, altered lipid metabolites as well as the impact of diet in the progress of Alzheimer’s disease (AD) are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anstey KJ, Lipnicki DM, Low LF (2008) Cholesterol as a risk factor for dementia and cognitive decline: a systematic review of prospective studies with meta-analysis. Am J Geriatr Psychiatry 16(5):343–354

    Article  PubMed  Google Scholar 

  • Astarita G, Piomelli D (2011) Lipidomics of Alzheimer’s disease: a liver peroxisomal dysfunction in the metabolism of omega-3 fatty acids. OCL 18(4):218–223

    Article  Google Scholar 

  • Bascoul-Colombo C, Guschina IA, Maskrey BH, Good M, O’Donnell VB, Harwood JL (2016) Dietary DHA supplementation causes selective changes in phospholipids from different brain regions in both wild type mice and the Tg2576 mouse model of Alzheimer’s disease. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 1861(6):524–537

    CAS  Google Scholar 

  • Bazan NG, Colangelo V, Lukiw WJ (2002) Prostaglandins and other lipid mediators in Alzheimer’s disease. Prostaglandins Other Lipid Mediat 68:197–210

    Article  PubMed  Google Scholar 

  • Belayev L, Mukherjee PK, Balaszczuk V, Calandria JM, Obenaus A, Khoutorova L, Bazan NG (2017) Neuroprotectin D1 upregulates Iduna expression and provides protection in cellular uncompensated oxidative stress and in experimental ischemic stroke. Cell Death Differ 24(6):1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergstrom S, Ryhage R, Samuelsson B, Sjovall J (1962) The structure of prostaglandin E, F1 and F2. Acta Chem Scand 16(2):501–502

    Article  CAS  Google Scholar 

  • Calder PC (1998) Immunoregulatory and anti-inflammatory effects of n-3 polyunsaturated fatty acids. Braz J Med Biol Res 31(4):467–490

    Article  CAS  PubMed  Google Scholar 

  • Calon F, Lim GP, Morihara T, Yang F, Ubeda O, Salem N et al (2005) Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer’s disease. Eur J Neurosci 22(3):617–626

    Article  PubMed  Google Scholar 

  • Carvey PM, Hendey B, Monahan AJ (2009) The blood–brain barrier in neurodegenerative disease: a rhetorical perspective. J Neurochem 111(2):291–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Wagener JF, Morgan DH, Hui L, Ghribi O, Geiger JD (2010) Endolysosome mechanisms associated with Alzheimer’s disease-like pathology in rabbits ingesting cholesterol-enriched diet. J Alzheimers Dis 22(4):1289–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Combrinck M, Williams J, De Berardinis MA, Warden D, Puopolo M, Smith AD, Minghetti L (2006) Levels of CSF prostaglandin E2, cognitive decline, and survival in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 77:85–88. https://doi.org/10.1136/jnnp.2005.063131

    Article  CAS  PubMed  Google Scholar 

  • Corsinovi L, Biasi F, Poli G, Leonarduzzi G, Isaia G (2011) Dietary lipids and their oxidized products in Alzheimer’s disease. Mol Nutr Food Res 55(S2):S161–S172

    Article  CAS  PubMed  Google Scholar 

  • De Roos B, Mavrommatis Y, Brouwer IA (2009) Long-chain n-3 polyunsaturated fatty acids: new insights into mechanisms relating to inflammation and coronary heart disease. Br J Pharmacol 158:413–428

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Giles C, Takechi R, Mellett NA, Meikle PJ, Dhaliwal S, Mamo JC (2016) The effects of long-term saturated fat enriched diets on the brain lipidome. PLoS One 11(12):e0166964

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gupta S, Knight AG, Gupta S, Keller JN, Bruce-Keller AJ (2012) Saturated long-chain fatty acids activate inflammatory signaling in astrocytes. J Neurochem 120(6):1060–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han X, M Holtzman D, W McKeel D, Kelley J, Morris JC (2002) Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem 82(4):809–818

    Article  CAS  PubMed  Google Scholar 

  • Han X, Rozen S, Boyle SH, Hellegers C, Cheng H, Burke JR et al (2011) Metabolomics in early Alzheimer’s disease: identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS One 6(7):e21643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karmi A, Iozzo P, Viljanen A, Hirvonen J, Fielding BA, Virtanen K et al (2010) Increased brain fatty acid uptake in metabolic syndrome. Diabetes 59(9):2171–2177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolsch H, Heun R, Kerksiek A, Von Bergmann K, Maier W, Lutjohann D (2004) Altered levels of plasma 24S-and 27-hydroxycholesterol in demented patients. Neurosci Lett 368(3):303–308

    Article  CAS  PubMed  Google Scholar 

  • Ledesma MD, Dotti CG (2006) Amyloid excess in Alzheimer’s disease: what is cholesterol to be blamed for? FEBS Lett 580(23):5525–5532

    Article  CAS  PubMed  Google Scholar 

  • Logan AC (2004) Omega-3 fatty acids and major depression: a primer for the mental health professional. Lipids Health Dis 3(1):25

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, Serhan CN, Bazan NG (2005) A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 115(10):2774–2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lütjohann D, Papassotiropoulos A, Björkhem I, Locatelli S, Bagli M, Oehring RD, Schlegel U, Jessen F, Rao ML, von Bergmann K, Heun R (2000) Plasma 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients. J Lipid Res 41(2):195–198

    PubMed  Google Scholar 

  • Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre TR, MacArthur LH et al (2014) Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med 20(4):415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mielke MM, Bandaru VVR, Haughey NJ, Rabins PV, Lyketsos CG, Carlson MC (2010) Serum sphingomyelins and ceramides are early predictors of memory impairment. Neurobiol Aging 31(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Muskiet FA, van Goor SA, Kuipers RS, Velzing-Aarts FV, Smit EN, Bouwstra H et al (2006) Long-chain polyunsaturated fatty acids in maternal and infant nutrition. Prostaglandins Leukot Essent Fat Acids 75(3):135–144

    Article  CAS  Google Scholar 

  • Nys M, Debruyne I (2011) Lipids & Brain 2: a symposium on lipids and brain health. Inform 11:397–399

    Google Scholar 

  • Oksman M, Iivonen H, Hogyes E, Amtul Z, Penke B, Leenders I et al (2006) Impact of different saturated fatty acid, polyunsaturated fatty acid and cholesterol containing diets on beta-amyloid accumulation in APP/PS1 transgenic mice. Neurobiol Dis 23(3):563–572

    Article  CAS  PubMed  Google Scholar 

  • Olazarán J, Gil-de-Gómez L, Rodríguez-Martín A, Valentí-Soler M, Frades-Payo B, Marín-Muñoz J, Antúnez C, Frank-García A, Jiménez CA, Gracia LM, Torregrossa RP, Guisasola MC, Bermejo-Pareja F, Sánchez-Ferro Á, Pérez-Martínez DA, Palomo SM, Farquhar R, Rábano A, Calero M (2015) A blood-based, 7-metabolite signature for the early diagnosis of Alzheimer’s disease. J Alzheimers Dis 45:1157–1173

    Article  PubMed  CAS  Google Scholar 

  • Papassotiropoulos A, Lütjohann D, Bagli M, Locatelli S, Jessen F, Buschfort R, Ptok U, Björkhem I, von Bergmann K, Heun R (2002) 24S-hydroxycholesterol in cerebrospinal fluid is elevated in early stages of dementia. J Psychiatr Res 36(1):27–32

    Article  CAS  PubMed  Google Scholar 

  • Pettegrew JW, Panchalingam K, Hamilton RL, McClure RJ (2001) Brain membrane phospholipid alterations in Alzheimer’s disease. Neurochem Res 26(7):771–782

    Article  CAS  PubMed  Google Scholar 

  • Prasad MR, Lovell MA, Yatin M, Dhillon H, Markesbery WR (1998) Regional membrane phospholipid alterations in Alzheimer’s disease. Neurochem Res 23(1):81–88

    Article  CAS  PubMed  Google Scholar 

  • Pratico D, Clark CM, Liun F, Lee VYM, Trojanowski JQ (2002) Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease. Arch Neurol 59(6):972–976

    Article  PubMed  Google Scholar 

  • Proitsi P, Kim M, Whiley L, Pritchard M, Leung R, Soininen H, Kloszewska I, Mecocci P, Tsolaki M, Vellas B, Sham P, Lovestone S, Powell JF, Dobson RJ, Legido-Quigley C (2015) Plasma lipidomics analysis finds long chain cholesteryl esters to be associated with Alzheimer’s disease. Transl Psychiatry 5:e494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quehenberger O, Dennis EA (2011) The human plasma lipidome. N Engl J Med 365(19):1812–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Refolo LM, Pappolla MA, Malester B, LaFrancois J, Bryant-Thomas T, Wang R et al (2000) Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol Dis 7(4):321–331

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Suzuki I, Nakamura T, Bernier F, Aoshima K, Oda Y (2012) Identification of a new plasma biomarker of Alzheimer’s disease using metabolomics technology. J Lipid Res 53(3):567–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shevchenko A, Simons K (2010) Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol 11(8):593

    Article  CAS  PubMed  Google Scholar 

  • Stranahan AM, Cutler RG, Button C, Telljohann R, Mattson MP (2011) Diet-induced elevations in serum cholesterol are associated with alterations in hippocampal lipid metabolism and increased oxidative stress. J Neurochem 118(4):611–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stryer L (1988) Biochemistry. In: Biosynthesis of membrane lipids and steroid hormones. W.H. Freeman and Company, New York, pp 552–553

    Google Scholar 

  • Tajima Y, Ishikawa M, Maekawa K, Murayama M, Senoo Y, Nishimaki-Mogami T, Okuno A (2013) Lipidomic analysis of brain tissues and plasma in a mouse model expressing mutated human amyloid precursor protein/tau for Alzheimer’s disease. Lipids Health Dis 12(1):68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trushina E, Dutta T, Persson XMT, Mielke MM, Petersen RC (2013) Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer’s disease using metabolomics. PLoS One 8(5):e63644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Liu D, Wang F, Liu S, Zhao S, Ling EA, Hao A (2012) Saturated fatty acids activate microglia via Toll-like receptor 4/NF-κB signalling. Br J Nutr 107(2):229–241

    Article  CAS  PubMed  Google Scholar 

  • Whelan J (2008) (n-6) and (n-3) Polyunsaturated fatty acids and the aging brain: food for thought. J Nutr 138(12):2521–2522

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K et al (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46(D1):D608–D617. 29140435

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski T, Newman K, Javitt NB (2013) Alzheimer’s disease: brain desmosterol levels. J Alzheimers Dis 33(3):881–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong MW, Braidy N, Poljak A, Pickford R, Thambisetty M, Sachdev PS (2017) Dysregulation of lipids in Alzheimer’s disease and their role as potential biomarkers. Alzheimers Dement 13(7):810–827

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efstathia Kalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalli, E. (2020). Nutritional Lipidomics in Alzheimer’s Disease. In: Vlamos, P. (eds) GeNeDis 2018. Advances in Experimental Medicine and Biology, vol 1195. Springer, Cham. https://doi.org/10.1007/978-3-030-32633-3_14

Download citation

Publish with us

Policies and ethics