Skip to main content

Primer on Methylmercury Biomagnification in the Everglades

  • Chapter
  • First Online:
Mercury and the Everglades. A Synthesis and Model for Complex Ecosystem Restoration
  • 241 Accesses

Abstract

The purpose of this chapter is to provide background information on the entry of methylmercury into the food web and the process by which it biomagnifies through food webs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Babiarz CL, Hurley JP, Hoffmann SR, Andren AW, Shafer MM, Armstrong DE (2001) Partitioning of total mercury and methylmercury to the colloidal phase in freshwaters. Environ Sci Technol 35(24):4773–4782

    Article  CAS  PubMed  Google Scholar 

  • Belicka LL, Sokol ER, Hoch JM, Jaffé R, Trexler JC (2012) A molecular and stable isotopic approach to investigate algal and detrital energy pathways in a freshwater marsh. Wetlands 32(3):531–542

    Article  Google Scholar 

  • Browder JA, Gleason PJ, Swift DR (1994) Periphyton in the Everglades: spatial variation, environmental correlates, and ecological implications. In: The Everglades. St. Lucie Press, Delray Beach, FL, pp 379–419

    Google Scholar 

  • Brumbaugh WG, Krabbenhoft DP, Helsel DR, Wiener JG, Echols KR (2001) A national pilot study of mercury contamination of aquatic ecosystems along multiple gradients: bioaccumulation in fish. U. S. Geological Survey, [Reston, VA], United States (USA)

    Google Scholar 

  • Cabana G, Rasmussen JB (1994) Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 372:255–257

    Article  CAS  Google Scholar 

  • Campbell LM, Norstrom RJ, Hobson KA, Muir DCG, Backus S, Fisk AT (2005) Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay). Sci Total Environ 351–352:247–263. https://doi.org/10.1016/j.scitotenv.2005.02.043

    Article  CAS  PubMed  Google Scholar 

  • Chang CC, Kendall C, Silva SR, Battaglin WA, Campbell DH (2002) Nitrate stable isotopes: tools for determining nitrate sources among different land uses in the Mississippi River Basin. Can J Fish Aquat Sci 59(12):1874–1885

    Article  CAS  Google Scholar 

  • Chasar LC, Scudder BC, Stewart AR, Bell AH, Aiken GR (2009) Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation. Environ Sci Technol 43(8):2733–2739

    Article  CAS  PubMed  Google Scholar 

  • Clayden MG, Kidd KA, Wyn B, Kirk JL, Muir DC, O’Driscoll NJ (2013) Mercury biomagnification through food webs is affected by physical and chemical characteristics of lakes. Environ Sci Technol 47(21):12047–12053

    Article  CAS  PubMed  Google Scholar 

  • de Wit HA, Kainz MJ, Lindholm M (2012) Methylmercury bioaccumulation in invertebrates of boreal streams in Norway: effects of aqueous methylmercury and diet retention. Environ Pollut 164:235–241

    Article  PubMed  CAS  Google Scholar 

  • DeForest DK, Brix KV, Adams WJ (2007) Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat Toxicol 84(2):236–246

    Article  CAS  PubMed  Google Scholar 

  • Exponent (formerly PTI) (1998) Ecological risks to wading birds of the Everglades in relation to phosphorus reductions in water and mercury bioaccumulation in fishes. Prepared for the Sugar Cane Growers Cooperative. Exponent, Bellevue, WA

    Google Scholar 

  • Gorski PR, Cleckner LB, Hurley JP, Sierszen ME, Armstrong DE (2003) Factors affecting enhanced mercury bioaccumulation in inland lakes of Isle Royale National Park, USA. Sci Total Environ 304(1):327–348. https://doi.org/10.1016/S0048-9697(02)00579-X

    Article  CAS  PubMed  Google Scholar 

  • Gorski P, Armstrong D, Hurley J, Krabbenhoft D (2008) Influence of natural dissolved organic carbon on the bioavailability of mercury to a freshwater alga. Environ Pollut 154(1):116–123

    Article  CAS  PubMed  Google Scholar 

  • Hall B, Bodaly R, Fudge R, Rudd J, Rosenberg D (1997) Food as the dominant pathway of methylmercury uptake by fish. Water Air Soil Pollut 100(1):13–24

    CAS  Google Scholar 

  • Jardine TD, Kidd KA, Fisk AT (2006) Applications, considerations, and sources of uncertainty when using stable isotope analysis in ecotoxicology. Environ Sci Technol 40(24):7501–7511

    Article  CAS  PubMed  Google Scholar 

  • Jardine TD, Kidd KA, O’Driscoll N (2013) Food web analysis reveals effects of pH on mercury bioaccumulation at multiple trophic levels in streams. Aquat Toxicol 132:46–52

    Article  PubMed  CAS  Google Scholar 

  • Kainz M, Mazumder A (2005) Effect of algal and bacterial diet on methyl mercury concentrations in zooplankton. Environ Sci Technol 39(6):1666–1672

    Article  CAS  PubMed  Google Scholar 

  • Kidd KA, Bootsma HA, Hesslein RH, Lyle Lockhart W, Hecky RE (2003) Mercury concentrations in the food web of Lake Malawi, East Africa. J Great Lakes Res 29(Suppl 2):258–266. https://doi.org/10.1016/s0380-1330(03)70553-x

    Article  CAS  Google Scholar 

  • Lange TR, Royals HE, Connor LL (1993) Influence of water chemistry on mercury concentration in largemouth bass from Florida lakes. Trans Am Fish Soc 122(1):74–84

    Article  CAS  Google Scholar 

  • Lavoie RA, Jardine TD, Chumchal MM, Kidd KA, Campbell LM (2013) Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environ Sci Technol 47(23):13385–13394. https://doi.org/10.1021/es403103t

    Article  CAS  PubMed  Google Scholar 

  • Lee CS, Fisher NS (2016) Methylmercury uptake by diverse marine phytoplankton. Limnol Oceanogr 61(5):1626–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CS, Fisher NS (2017) Bioaccumulation of methylmercury in a marine copepod. Environ Toxicol Chem 36(5):1287–1293

    Article  CAS  PubMed  Google Scholar 

  • Luengen AC, Fisher NS, Bergamaschi BA (2012) Dissolved organic matter reduces algal accumulation of methylmercury. Environ Toxicol Chem 31(8):1712–1719

    Article  CAS  PubMed  Google Scholar 

  • Mason RP, Reinfelder JR, Morel FM (1996) Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environ Sci Technol 30(6):1835–1845

    Article  CAS  Google Scholar 

  • Moye HA, Miles CJ, Phlips EJ, Sargent B, Merritt KK (2002) Kinetics and uptake mechanisms for monomethylmercury between freshwater algae and water. Environ Sci Technol 36(16):3550–3555. https://doi.org/10.1021/es011421z

    Article  CAS  PubMed  Google Scholar 

  • Painter K, Janz D, Jardine T (2016) Bioaccumulation of mercury in invertebrate food webs of Canadian Rocky Mountain streams. Freshwater Science 35(4):1248–1262

    Article  Google Scholar 

  • Pickhardt PC, Fisher NS (2007) Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies. Environ Sci Technol 41(1):125–131

    Article  CAS  PubMed  Google Scholar 

  • Pickhardt PC, Folt CL, Chen CY, Klaue B, Blum JD (2002) Algal blooms reduce the uptake of toxic methylmercury in freshwater food webs. Proc Natl Acad Sci 99(7):4419–4423. https://doi.org/10.1073/pnas.072531099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickhardt PC, Stepanova M, Fisher NS (2006) Contrasting uptake routes and tissue distributions of inorganic and methylmercury in mosquitofish (Gambusia affinis) and redear sunfish (Lepomis microlophus). Environ Toxicol Chem 25(8):2132–2142

    Article  CAS  PubMed  Google Scholar 

  • Pollman CD (2014) Mercury cycling in aquatic ecosystems and trophic state-related variables—implications from structural equation modeling. Sci Total Environ 499:62–73

    Article  CAS  PubMed  Google Scholar 

  • Pollman CD, Axelrad DM (2014) Mercury bioaccumulation factors and spurious correlations. Sci Total Environ 496:vi–xii

    Article  CAS  PubMed  Google Scholar 

  • PTI (later to become Exponent) (1995) Ecological risks to wading birds of the Everglades in relation to phosphorus reductions in water and mercury bioaccumulation in fishes. Prepared for Sugar Cane Growers Cooperative. PTI Environmental Services, Bellevue, WA

    Google Scholar 

  • Reinfelder JR, Fisher NS, Luoma SN, Nichols JW, Wang W-X (1998) Trace element trophic transfer in aquatic organisms: a critique of the kinetic model approach. Sci Total Environ 219(2-3):117–135

    Article  CAS  PubMed  Google Scholar 

  • Riget F, Møller P, Dietz R, Nielsen T, Asmund G, Strand J et al (2007) Transfer of mercury in the marine food web of West Greenland. J Environ Monit 9(8):877–883

    Article  CAS  PubMed  Google Scholar 

  • Rodgers D, Beamish F (1982) Dynamics of dietary methylmercury in rainbow trout, Salmo gairdneri. Aquat Toxicol 2(5–6):271–290

    Article  CAS  Google Scholar 

  • Rumbold DG, Evans DW, Niemczyk S, Fink LE, Laine KA, Howard N et al (2011) Source identification of Florida bay’s methylmercury problem: mainland runoff versus atmospheric deposition and in situ production. Estuar Coasts 34(3):494–513. https://doi.org/10.1007/s12237-010-9290-5

    Article  CAS  Google Scholar 

  • Rumbold DG, Lange TR, Richard D, DelPizzo G, Hass N (2018a) Mercury biomagnification through food webs along a salinity gradient down-estuary from a biological hotspot. Estuar Coast Shelf Sci 200:116–125

    Article  CAS  Google Scholar 

  • Rumbold DG, Lange TR, Richard D, DelPizzo G, Haas N (2018b) Mercury concentrations and ratios of stable isotopes of nitrogen and carbon in food webs of the Caloosahatchee estuary, Florida. Florida Sci 81(4):105–125

    CAS  Google Scholar 

  • Schartup AT, Qureshi A, Dassuncao C, Thackray CP, Harding G, Sunderland EM (2018) A model for methylmercury uptake and trophic transfer by marine plankton. Environ Sci Technol 52(2):654–662. https://doi.org/10.1021/acs.est.7b03821

    Article  CAS  PubMed  Google Scholar 

  • Southworth GR, Peterson MJ, Bogle MA (2004) Bioaccumulation factors for mercury in stream fish. Environ Pract 6(2):135–143

    Article  Google Scholar 

  • Stemberger RS, Chen CY (1998) Fish tissue metals and zooplankton assemblages of northeastern U.S. lakes. Can J Fish Aquat Sci 55(2):339–352

    Article  CAS  Google Scholar 

  • Stordal M, Gill G, Wen LS, Santschi P (1996) Mercury phase speciation in the surface waters of three Texas estuaries: importance of colloidal forms. Limnol Oceanogr 41:52–61

    Article  CAS  Google Scholar 

  • Suedel BC, Boraczek JA, Peddicord RK, Clifford PA, Dillon TM (1994) Trophic transfer and biomagnification potential of contaminants in aquatic ecosystems. Rev Environ Contam Toxicol 136:21–89

    Article  CAS  PubMed  Google Scholar 

  • Swanson HK, Kidd KA (2010) Mercury concentrations in Arctic food fishes reflect the presence of anadromous Arctic charr (Salvelinus alpinus), species, and life history. Environ Sci Technol 44(9):3286–3292

    Article  CAS  PubMed  Google Scholar 

  • Thera JC, Rumbold DG (2014) Biomagnification of mercury through a subtropical coastal food web off Southwest Florida. Environ Toxicol Chem 33(1):65–73

    Article  CAS  PubMed  Google Scholar 

  • Tranvik L, Sherr EB, Sherr BF (1993) Uptake and utilization of ‘colloidal DOM’ by heterotrophic flagellates in seawater. Mar Ecol Prog Ser 92:301–309

    Article  Google Scholar 

  • Trexler JC, Gaiser EE, Kominoski JS, Sanchez J (2015) The role of periphyton mats in consumer community structure and function in calcareous wetlands: lessons from the Everglades. In: Microbiology of the Everglades ecosystem. Science Publications. CRC, Boca Raton, pp 155–179

    Chapter  Google Scholar 

  • Trudel M, Rasmussen JB (1997) Modeling the elimination of mercury by fish. Environ Sci Technol 31(6):1716–1722

    Article  CAS  Google Scholar 

  • van der Velden S, Dempson JB, Evans MS, Muir DCG, Power M (2013) Basal mercury concentrations and biomagnification rates in freshwater and marine food webs: effects on Arctic charr (Salvelinus alpinus) from eastern Canada. Sci Total Environ 444(0):531–542. https://doi.org/10.1016/j.scitotenv.2012.11.099

    Article  CAS  PubMed  Google Scholar 

  • Ward DM, Nislow KH, Folt CL (2010) Bioaccumulation syndrome: identifying factors that make some stream food webs prone to elevated mercury bioaccumulation. Ann N Y Acad Sci 1195(1):62–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watras CJ, Bloom NS (1992) Mercury and methylmercury in individual zooplankton: implications for bioaccumulation. Limnol Oceanogr 37(6):1313–1318

    Article  Google Scholar 

  • Watras CJW, Back RC, Halvorsena S, Hudson RJM, Morrison KA, Wente SP (1998) Bioaccumulation of mercury in pelagic freshwater food webs. Sci Total Environ 219:183–208

    Article  CAS  PubMed  Google Scholar 

  • Westöö G (1966) Determination of methylmercury compounds in foodstuffs I. Methylmercury compounds in fish, identification and determination. Acta Chem Scand 20(8):2131–2137

    Article  PubMed  Google Scholar 

  • Wiener JG, Krabbenhoft DP, Heinz GH, Scheuhammer AM (2003) Ecotoxicology of mercury. Handb Ecotoxicol 2:409–463

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren G. Rumbold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rumbold, D.G. (2019). Primer on Methylmercury Biomagnification in the Everglades. In: Rumbold, D., Pollman, C., Axelrad, D. (eds) Mercury and the Everglades. A Synthesis and Model for Complex Ecosystem Restoration. Springer, Cham. https://doi.org/10.1007/978-3-030-32057-7_7

Download citation

Publish with us

Policies and ethics