Skip to main content

A Causal Analysis for the Dominant Factor in the Extreme Geographic and Temporal Variability in Mercury Biomagnification in the Everglades

  • Chapter
  • First Online:
Mercury and the Everglades. A Synthesis and Model for Complex Ecosystem Restoration
  • 226 Accesses

Abstract

The objective of this chapter is to assemble and evaluate existing evidence (both from within and outside the Everglades) in a formal, causal analysis using criteria-guided judgement to determine the cause of the observed susceptibility of the Everglades to high rates of Hg biomagnification and its extreme geographic and temporal variability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Site 3A-15 had been previously well established as a Hg bioaccumulation “hot spot” and was a site of intense interest with respect to temporal trends in fish tissue Hg concentrations and causative factors, including the role of sulfate. Dynamic modeling using the Everglades Mercury Cycling Model (E-MCM) to test various causative factors is the subject of Chap. 4, Volume III.

References

  • Adams SM (2003) Establishing causality between environmental stressors and effects on aquatic ecosystems. Hum Ecol Risk Assess 9:17–35

    Article  CAS  Google Scholar 

  • Aiken G, Haitzer M, Ryan JN, Nagy K (2003) Interactions between dissolved organic matter and mercury in the Florida Everglades. Journal du Physique, IV 107:29–32

    Article  CAS  Google Scholar 

  • Atkeson TD, Axelrad DM (2004) Chapter 2B: Mercury monitoring, research and environmental assessment. In: 2004 Everglades consolidated report. South Florida Water Management District, West Palm Beach, FL, pp 2B:1–28

    Google Scholar 

  • Atkeson TD, Parks P (2001) Chapter 7: Everglades mercury problem. In: 2001 Everglades consolidated report. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Axelrad DM et al (2005) Chapter 2B: Mercury monitoring, research and environmental assessment in South Florida. In: 2005 South Florida environmental report—volume I. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Axelrad DM et al (2006) Chapter 2B: Mercury monitoring, research and environmental assessment in South Florida. In: 2006 South Florida environmental report—volume I. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Axelrad DM et al (2007) Chapter 3B: Mercury monitoring, research and environmental assessment. In: 2007 South Florida environmental report—volume I. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Axelrad DM et al (2013) Chapter 3B: Mercury and sulfur environmental assessment for the Everglades. In: 2013 South Florida environmental report. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Bae H, Dierberg FE, Ogram A (2014) Syntrophs dominate sequences associated with the mercury-methylating gene hgcA in the water conservation areas of the Florida Everglades. Appl Environ Microbiol 80:6517–6526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bailey LT, Mitchell CP, Engstrom DR, Berndt ME, Wasik JKC, Johnson NW (2017) Influence of porewater sulfide on methylmercury production and partitioning in sulfate-impacted lake sediments. Sci Total Environ 580:1197–1204

    Article  CAS  PubMed  Google Scholar 

  • Bates AL, Spiker EC, Holmes CW (1998) Speciation and isotopic composition of sedimentary sulfur in the Everglades, Florida, USA. Chem Geol 146:155–170

    Article  CAS  Google Scholar 

  • Bates AL et al (2002) Tracing sources of sulfur in the Florida Everglades. J Environ Qual 31:287–299

    Article  CAS  PubMed  Google Scholar 

  • Bemis BE, Kendall C, Lange T, Campbell L (2003) Using nitrogen and carbon isotopes to explain mercury variability in Largemouth bass. Greater Everglades Ecosystem Restoration (GEER) Meeting, April 2003, Palm Harbor, FL. Program and Abstracts

    Google Scholar 

  • Benoit JM, Gilmour CC, Mason RP, Heyes A (1999a) Sulfide controls on mercury speciation and bioavailability in sediment pore waters. Environ Sci Technol 33:951–957

    Article  CAS  Google Scholar 

  • Benoit JM, Mason RP, Gilmour CC (1999b) Estimation of mercury-sulfide speciation in sediment pore waters using octanol-water partitioning and implications for availability to methylating bacteria. Environ Toxicol Chem 18:2138–2141

    CAS  PubMed  Google Scholar 

  • Benoit J, Gilmour C Heyes A et al (2003) Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. In: Chai Y, Braids OC (eds) Biogeochemistry of environmentally important trace elements, ACS symposium series #835, American Chemical Society, Washington, DC, pp 262–297

    Google Scholar 

  • Berman M, Bartha R (1986) Control of the methylation process in a mercury-polluted aquatic sediment. Environ Pollut B 11:41–53

    Article  CAS  Google Scholar 

  • Branfireun BA, Roulet NT, Kelly C, Rudd JW (1999) In situ sulphate stimulation of mercury methylation in a boreal peatland: toward a link between acid rain and methylmercury contamination in remote environments. Glob Biogeochem Cycles 13:743–750

    Article  CAS  Google Scholar 

  • Brown CL, Parchaso F, Thompson JK, Luoma SN (2003) Assessing toxicant effects in a complex estuary: a case study of effects of silver on reproduction in the bivalve, Potamocorbula amurensis, in San Francisco Bay. Hum Ecol Risk Assess 9:95–119

    Article  CAS  Google Scholar 

  • Chambers RM, Pederson KA (2006) Variation in soil phosphorus, sulfur, and iron pools among South Florida wetlands. Hydrobiologia 569:63–70

    Article  CAS  Google Scholar 

  • Chen CW, Herr JW (2010) Simulating the effect of sulfate addition on methylmercury output from a wetland. J Environ Eng 136:354–362

    Article  CAS  Google Scholar 

  • Cleckner LB, Garrison PJ, Hurley JP, Olson ML, Krabbenhoft DP (1998) Trophic transfer of methyl mercury in the Northern Florida Everglades. Biogeochemistry 40:347–361

    Article  CAS  Google Scholar 

  • Cleckner LB, Gilmour CC, Hurley JP, Krabbenhoft DP (1999) Mercury methylation in periphyton of the Florida Everglades. Limnol Oceanogr 44:1815–1825

    Article  CAS  Google Scholar 

  • Coleman Wasik JK et al (2012) Methylmercury declines in a boreal peatland when experimental sulfate deposition decreases. Environ Sci Technol 46:6663–6671. https://doi.org/10.1021/es300865f

    Article  CAS  PubMed  Google Scholar 

  • Compeau G, Bartha R (1984) Methylation and demethylation of mercury under controlled redox, pH and salinity conditions. Appl Environ Microbiol 48:1203–1207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Compeau GC, Bartha R (1985) Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 50:498–502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corrales J, Naja GM, Dziuba C, Rivero RG, Orem W (2011) Sulfate threshold target to control methylmercury levels in wetland ecosystems. Sci Total Environ 409:2156–2162

    Article  CAS  PubMed  Google Scholar 

  • Craig P, Moreton P (1983) Total mercury, methyl mercury and sulphide in River Carron sediments. Mar Pollut Bull 14:408–411

    Article  CAS  Google Scholar 

  • Dierberg FE, DeBusk TA, Jerauld M, Gu B (2014) Appendix 3B-1: evaluation of factors influencing methylmercury accumulation in South Florida marshes. In: 2014 South Florida environmental report. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Drevnick PE et al (2007) Deposition and cycling of sulfur controls mercury accumulation in Isle Royale Fish. Environ Sci Technol 41:7266–7272

    Article  CAS  PubMed  Google Scholar 

  • Dvonch JT et al (1998) An investigation of source-receptor relationships for mercury in South Florida using event precipitation data. Sci Total Environ 213:95–108

    Article  CAS  Google Scholar 

  • Exponent (formerly PTI) (1998) Ecological risks to wading birds of the Everglades in relation to phosphorus reductions in water and mercury bioaccumulation in fishes. Prepared for the Sugar Cane Growers Cooperative of Florida

    Google Scholar 

  • Fink L (2004) Appendix 2B-6: STA-6 mercury special studies interim report. In: 2004 Everglades consolidated report. SFWMD, West Palm Beach, FL

    Google Scholar 

  • Fink L, Rawlik P (2000) Chapter 7: The Everglades mercury problem. In: 2000 Everglades consolidated report. South Florida Water Management District, West Palm Beach, FL, January

    Google Scholar 

  • Fink L, Rumbold DG, Rawlik P (1999) Chapter 7: The Everglades mercury problem. Everglades interim report. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Fox GA (1991) Practical causal inference for ecoepidemiologists. J Toxicol Environ Health 33:359–373

    Article  CAS  PubMed  Google Scholar 

  • Frederick PC, Spalding MG, Dusek R (2002) Wading birds as bioindicators of mercury contamination in Florida: annual and geographic variation. Environ Toxicol Chem 21:262–264

    Article  Google Scholar 

  • Frederick PC, Hylton B, Heath JA, Spalding MG (2004) A historical record of mercury contamination in Southern Florida (USA) as inferred from avian feather tissue. Environ Toxicol Chem 23:1474–1478

    Article  CAS  PubMed  Google Scholar 

  • Gabriel M, Redfield G, Rumbold D (2008) Appendix 3B-2: sulfur as a regional water quality concern. In: 2008 South Florida environmental report volume 1. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Gabriel MC, Howard N, Osborne TZ (2014) Fish mercury and surface water sulfate relationships in the Everglades protection area. Environ Manag 53:583–593

    Article  Google Scholar 

  • Gabriel MC, Axelrad D, Orem W, Osborne TZ (2015) Response to Julian et al. (2015) “Comment on and reinterpretation of Gabriel et al. (2014) ‘Fish mercury and surface water sulfate relationships in the Everglades protection area’”. Environ Manag 55:1227–1231

    Article  Google Scholar 

  • Germain G (2014) Appendix 3-1: annual permit report for Everglades stormwater treatment areas. In: 2014 South Florida environmental report—volume 1. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Gilmour CC (2011) A review of the literature on the impact of sulfate on methylmercury in sediments and soils. Prepared for Florida Department of Environmental Protection, Tallahassee, FL

    Google Scholar 

  • Gilmour CC, Henry EA (1991) Mercury methylation in aquatic systems affected by acid deposition. Environ Pollut 71(2–4):131–169

    Article  CAS  PubMed  Google Scholar 

  • Gilmour CC, Krabbenhoft DP (2001) Appendix 7-4: status of methylmercury production studies. In: 2001 Everglades consolidated report. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Gilmour CC, Henry EA, Mitchell R (1992) Sulfate stimulation of mercury methylation in freshwater sediments. Environ Sci Technol 26:2281–2287

    Article  CAS  Google Scholar 

  • Gilmour CC, Heyes A, Benoit JM, Riedel GS, Bell JT (1998a) Distribution and biogeochemical control of mercury methylation in the Florida Everglades. Report to the SFWMD. Contract #C-7690, West Palm Beach, FL, 38 p

    Google Scholar 

  • Gilmour CC, Riedel GS et al (1998b) Methylmercury concentrations and production rates across a trophic gradient in the Northern Everglades. Biogeochemistry 40:327–345

    Article  CAS  Google Scholar 

  • Gilmour CC, Krabbenhoft DP, Orem WO (2004a) Appendix 2B-3: mesocosm studies to quantify how methylmercury in the Everglades responds to changes in mercury, sulfur, and nutrient loading. In: 2004 Everglades consolidated report. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Gilmour CC, Krabbenhoft DP, Orem W, Aiken G (2004b) Appendix 2B-1: influence of drying and rewetting on mercury and sulfur cycling in Everglades and STA soils. In: 2004 Everglades consolidated report. South Florida Water Management District, West Palm Beach, FL, 19 p

    Google Scholar 

  • Gilmour CC, Krabbenhoft D, Orem W, Aiken G, Roden E (2007a) Appendix 3B-2: status report on ACME studies on the control of mercury methylation and bioaccumulation in the Everglades. In: 2007 South Florida environmental report—volume I. South Florida Water Management District

    Google Scholar 

  • Gilmour CC, Orem W, Krabbenhoft D, Mendelssohn IA (2007b) Appendix 3B-3. preliminary assessment of sulfur sources, trends and effects in the Everglades. In: 2007 South Florida environmental report—volume I. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Gilmour CC, Roden E, Harris R (2008) Appendix 3B-3: approaches to modeling sulfate reduction and methylmercury production in the Everglades. In: 2008 South Florida environmental report—volume I. South Florida Water Management District

    Google Scholar 

  • Gilmour CC, Podar M et al (2013) Mercury methylation by novel microorganisms from new environments. Environ Sci Technol 47:11810–11820

    Article  CAS  PubMed  Google Scholar 

  • Glover JB et al (2010) Mercury in South Carolina fishes, USA. Ecotoxicology 19:781–795

    Article  CAS  PubMed  Google Scholar 

  • Gu B, Axelrad DM, Lange T (2012) Chapter 3B: Regional mercury and sulfur monitoring and environmental assessment. In: 2012 South Florida environmental report—volume I. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Guentzel J, Landing W, Gill G, Pollman C (1995) Atmospheric deposition of mercury in Florida: the FAMS project (1992–1994). Water Air Soil Pollut 80:393–402

    Article  CAS  Google Scholar 

  • Hammerschmidt CR, Fitzgerald WF (2004) Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environ Sci Technol 38:1487–1495

    Article  CAS  PubMed  Google Scholar 

  • Hammerschmidt C, Fitzgerald W, Lamborg C, Balcom P, Visscher P (2004) Biogeochemistry of methylmercury in sediments of Long Island Sound. Mar Chem 90:31–52

    Article  CAS  Google Scholar 

  • Harmon S, King J, Gladden J, Chandler GT, Newman L (2004) Methylmercury formation in a wetland mesocosm amended with sulfate. Environ Sci Technol 38:650–656

    Article  CAS  PubMed  Google Scholar 

  • Harris R, Pollman CD, Hutchinson D, Beal D (2001) Appendix 7-3: status of Everglades mercury cycling model. In: 2001 Everglades consolidated report. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Hill AB (1965) The environment and disease: association or causation? Proc R Soc Med 58:295–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hrabik TR, Watras CJ (2002) Recent declines in mercury concentration in a freshwater fishery: isolating the effects of de-acidification and decreased atmospheric mercury deposition in Little Rock Lake. Sci Total Environ 297:229–237

    Article  CAS  PubMed  Google Scholar 

  • Hurley JP, Krabbenhoft DP, Cleckner LB, Olson ML, Aiken GR, Rawlik PS (1998) System controls on the aqueous distribution of mercury in the Northern Florida Everglades. Biogeochemistry 40:293–311

    Article  CAS  Google Scholar 

  • Husar JD, Husar RB (2002) Trends of anthropogenic mercury mass flows and emissions in Florida. FDEP final report, PO# S3700 303975, pp 1–74

    Google Scholar 

  • Jay JA, Morel FM, Hemond HF (2000) Mercury speciation in the presence of polysulfides. Environ Sci Technol 34:2196–2200

    Article  CAS  Google Scholar 

  • Jerauld M, Dierberg FE, DeBusk WF, DeBusk TA (2015) Appendix 3B-1: evaluation of factors influencing methylmercury accumulation in South Florida Marshes. In: 2015 South Florida environmental report. South Florida water Management District, West Palm Beach, FL

    Google Scholar 

  • Jeremiason JD et al (2006) Sulfate addition increases methylmercury production in an experimental wetland. Environ Sci Technol 40:3800–3806

    Article  CAS  PubMed  Google Scholar 

  • Johnson NW, Mitchell CP, Engstrom DR, Bailey LT, Wasik JKC, Berndt ME (2016) Methylmercury production in a chronically sulfate-impacted sub-boreal wetland. Environ Sci Process Impacts 18:725–734

    Article  CAS  PubMed  Google Scholar 

  • Jordan JL, Armstrong NE, Burger J, Burkholder J, Hsieh YP, Meganck R, Donk EV, Ward R (2007) Appendix 1A-5: final report of the peer review panel concerning the 2007 South Florida environmental report. In: 2007 South Florida environmental report. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Julian P (2013) Mercury bio-concentration factor in mosquito fish (Gambusia spp.) in the Florida Everglades. Bull Environ Contam Toxicol 90:329–332

    Article  CAS  PubMed  Google Scholar 

  • Julian P (2014) Reply to “Mercury bioaccumulation and bioaccumulation factors for everglades mosquitofish as related to sulfate: a re-analysis of Julian II (2013)”. Bull Environ Contam Toxicol 93:517

    Article  CAS  PubMed  Google Scholar 

  • Julian P, Gu B (2015) Mercury accumulation in largemouth bass (Micropterus salmoides Lacépède) within marsh ecosystems of the Florida Everglades, USA. Ecotoxicology 24:202–214

    Article  CAS  PubMed  Google Scholar 

  • Julian P, Gu B (2016) Appendix 3B-1: Everglades mercury hotspot study: preliminary analysis. In: 2016 South Florida environmental report. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Julian P, Gu B et al (2014) Chapter 3B: Mercury and sulfur environmental assessment for the Everglades. In: 2014 South Florida environmental report. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Julian P, Gu B, Redfield G (2015a) Comment on and reinterpretation of Gabriel et al. 2014a. ‘Fish mercury and surface water sulfate relationships in the Everglades Protection Area’. Environ Manag 55:1–5

    Article  Google Scholar 

  • Julian P, Gu B, Redfield G, Weaver K et al (2015b) Chapter 3B: Mercury and sulfur environmental assessment for the Everglades. In: 2015 South Florida environmental report. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Julian P, Gu B, Redfield G, Weaver K (2016) Chapter 3B: Mercury and sulfur environmental assessment for the Everglades. In: 2016 South Florida environmental report. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Kamman NC, Lorey PM, Driscoll CT, Estabrook R, Major A, Pientka B, Glassford E (2004) Assessment of mercury in waters, sediments, and biota of New Hampshire and Vermont Lakes, USA, sampled using a geographically randomized design. Environ Toxicol Chem 23:1172–1186

    Article  CAS  PubMed  Google Scholar 

  • Kendall C, Bemis BE, Trexler J, Lange T, Stober JQ (2003) Is food web structure a main control on mercury concentrations in fish in the Everglades? Greater Everglades ecosystem restoration (GEER) meeting, April 2003, Palm Harbor, FL. Program and Abstracts

    Google Scholar 

  • Kerin E et al (2006) Mercury methylation among the dissimilatory iron-reducing bacteria. Appl Environ Microbiol 72:7912–7921

    Article  CAS  Google Scholar 

  • Kidd KA, Bootsma HA, Hesslein RH, Lyle Lockhart W, Hecky RE (2003) Mercury concentrations in the food web of Lake Malawi, East Africa. J Great Lakes Res 29:258–266

    Article  CAS  Google Scholar 

  • Kidd KA, Muir DC, Evans MS, Wang X, Whittle M, Swanson HK, Johnston T, Guildford S (2012) Biomagnification of mercury through lake trout (Salvelinus namaycush) food webs of lakes with different physical, chemical and biological characteristics. Sci Total Environ 438:135–143

    Article  CAS  PubMed  Google Scholar 

  • King JK, Kostka JE, Frischer ME, Saunders FM (2000) Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. Appl Environ Microbiol 66:2430–2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krabbenhoft DP, Fink L (2001) Appendix 7-8: the effect of dry down and natural fires on mercury methylation in the Florida Everglades. In: 2001 Everglades consolidated report. South Florida Water Management District, West Palm Beach, FL, 14 p

    Google Scholar 

  • Krabbenhoft DP, Hurley JP, Olson ML, Cleckner LB (1998a) Diel variability of mercury phase and species distributions in the Florida Everglades. Biogeochemistry 40:311–325

    Article  CAS  Google Scholar 

  • Krabbenhoft DP et al (1998b) Methylmercury dynamics in littoral sediments of a temperate seepage lake. Can J Fish Aquat Sci 55:835–844

    Article  CAS  Google Scholar 

  • Krabbenhoft D et al (2001) Mercury cycling in the Florida Everglades: a mechanistic study. Verh Internat Verein Limnol 27:1657–1660

    Google Scholar 

  • Krabbenhoft D, Orem W, Aiken G, Gilmour C (2004) Unraveling the complexities of mercury methylation in the Everglades: the use of mesocosms to test the effects of “new” mercury, sulfate, and organic carbon. In: 7th international conference on mercury as a global pollutant, June 27–July 2, 2004, Ljubljana, Slovenia

    Google Scholar 

  • Krabbenhoft DP et al (2010) The influence of canal water releases on the distribution of mercury, methylmercury, sulfate and dissolved organic carbon in Everglades National Park: implications for ecosystem restoration. Greater Everglades Ecosystem Restoration (GEER) Meeting, July 2010, Naples, FL. Program and Abstracts

    Google Scholar 

  • Landing WW et al (1995) Relationships between the atmospheric deposition of trace elements, major ions, and mercury in Florida: the FAMS project (1992–1993). Water Air Soil Pollut 80:343–352

    Article  CAS  Google Scholar 

  • Lange TR, Richard DA, Royals HE (1999) Trophic relationships of mercury bioaccumulation in fish from the Florida Everglades. Final annual report. Florida game and fresh water fish commission, fisheries research laboratory, Eustis, FL. Prepared for the Florida Department of Environmental Protection, Tallahassee, FL

    Google Scholar 

  • Lange TR, Richard DA, Royals HE (2000) Long-term trends of mercury bioaccumulation in Florida’s largemouth bass. In: Abstracts of the annual meeting of the South Florida mercury science program, Tarpon Springs, FL, 8–11 May 2000

    Google Scholar 

  • Lange TR, Richard DA, Sargent B (2005) Annual fish mercury monitoring report, august 2005. Long-term monitoring of mercury in largemouth bass from the Everglades and peninsular Florida. Florida Fish and Wildlife Conservation Commission, Eustis, FL

    Google Scholar 

  • Langer CS, Fitzgerald WF, Visscher PT, Vandal GM (2001) Biogeochemical cycling at Barn Island salt marsh, Stonington, CT, USA. Wetl Ecol Manag 9:295–310

    Article  CAS  Google Scholar 

  • Lilienfeld AM, Lilienfeld AB (1980) Foundations of epidemiology, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Loftus WF (2000) Accumulation and fate of mercury in an Everglade aquatic food web. PhD dissertation, Florida International University, Miami, FL

    Google Scholar 

  • Luengen AC, Flegal AR (2009) Role of phytoplankton in mercury cycling in the San Francisco Bay estuary. Limnol Oceanogr 54:23–40

    Article  CAS  Google Scholar 

  • Marvin-DiPasquale M, Agee J, Bouse R, Jaffe B (2003) Microbial cycling of mercury in contaminated pelagic and wetland sediments of San Pablo Bay, California. Environ Geol 43:260–267

    Article  CAS  Google Scholar 

  • McPherson BF, Miller RL, Sobczak R, Clark C (2003) Water quality in Big Cypress National Preserve and Everglades National Park, 1960–2000. U.S. Geological Survey Fact Sheet FS-097-03

    Google Scholar 

  • Meyer MW, Rasmussen PW, Watras CJ, Fevold BM, Kenow KP (2011) Bi-phasic trends in mercury concentrations in blood of Wisconsin common loons during 1992–2010. Ecotoxicology 20:1659–1668

    Article  CAS  PubMed  Google Scholar 

  • Miller CL, Mason RP, Gilmour CC, Heyes A (2007) Influence of dissolved organic matter on the complexation of mercury under sulfidic conditions. Environ Toxicol Chem 26:624–633

    Article  CAS  PubMed  Google Scholar 

  • Mitchell CP, Branfireun BA, Kolka RK (2008) Assessing sulfate and carbon controls on net methylmercury production in peatlands: an in situ mesocosm approach. Appl Geochem 23:503–518

    Article  CAS  Google Scholar 

  • Munthe J et al (2007) Recovery of mercury-contaminated fisheries. AMBIO J Hum Environ 36:33–44

    Article  CAS  Google Scholar 

  • Muresan B, Cossa D, Jézéquel D, Prévot F, Kerbellec S (2007) The biogeochemistry of mercury at the sediment–water interface in the Thau lagoon. 1. Partition and speciation. Estuar Coast Shelf Sci 72:472–484

    Article  CAS  Google Scholar 

  • Myrbo A, Swain E, Johnson N, Engstrom D, Pastor J, Dewey B, Monson P, Brenner J, Dykhuizen Shore M, Peters E (2017) Increase in nutrients, mercury, and methylmercury as a consequence of elevated sulfate reduction to sulfide in experimental wetland mesocosms. J Geophys Res Biogeo 122:2769–2785

    Article  CAS  Google Scholar 

  • Naftz DL, Cederberg JR, Krabbenhoft DP, Beisner KR, Whitehead J, Gardberg J (2011) Diurnal trends in methylmercury concentration in a wetland adjacent to Great Salt Lake, Utah, USA. Chem Geol 283:78–86

    Article  CAS  Google Scholar 

  • Nimick DA, Gammons CH, Parker SR (2011) Diel biogeochemical processes and their effect on the aqueous chemistry of streams: a review. Chem Geol 283:3–17

    Article  CAS  Google Scholar 

  • Ogden J, Robertson W Jr, Davis G, Schmidt T (1974) Pesticides, polychlorinated biphenyls and heavy metals in upper food chain levels, Everglades National Park and vicinity. South Florida environmental project: ecological report no. DI-SFEP-74-16, National Technical Information Service, US Department of Commerce

    Google Scholar 

  • Orem WH (2004) Impacts of sulfate contamination on the Florida Everglades ecosystem. USGS Fact Sheet FS 109-03

    Google Scholar 

  • Orem WH, Lerch HE, Rawlik P (1997) Geochemistry of surface and pore water at USGS coring sites in wetlands of South Florida: 1994 and 1995. U.S. Geological Survey Open-File Report 97–454, pp 36–39

    Google Scholar 

  • Orem W, Gilmour C et al (2011) Sulfur in the South Florida ecosystem: distribution, sources, biogeochemistry, impacts and management for restoration. Crit Rev Environ Sci Technol 41:249–288

    Article  CAS  Google Scholar 

  • Patrick Jr W, Gambrell R, Parkpian P, Tan F (1994) Mercury in soils and plants in the Florida Everglades sugarcane area. Mercury pollution: integration and synthesis. Lewis Publishers, Boca Raton, FL, p 609

    Google Scholar 

  • Pirrone N, Allegrini I, Keeler GJ, Nriagu JO, Rossmann R, Robbins JA (1998) Historical atmospheric mercury emissions and depositions in North America compared to mercury accumulations in sedimentary records. Atmos Environ 32:929–940

    Article  CAS  Google Scholar 

  • Podar M et al (2015) Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Sci Adv 1:e1500675

    Article  PubMed  PubMed Central  Google Scholar 

  • Pollman CD (2012) Modeling sulfate and gambusia mercury relationships in the Everglades—final report. Florida Department of Environmental Protection, Tallahassee, FL. Aqua Lux Lucis, Gainesville, FL

    Google Scholar 

  • Pollman CD (2014) Mercury cycling in aquatic ecosystems and trophic state-related variables—implications from structural equation modeling. Sci Total Environ 499:62–73

    Article  CAS  PubMed  Google Scholar 

  • Pollman CD, Axelrad DM (2014a) Mercury bioaccumulation and bioaccumulation factors for everglades mosquitofish as related to sulfate: a re-analysis of Julian II (2013). Bull Environ Contam Toxicol 93:509–516

    Article  CAS  PubMed  Google Scholar 

  • Pollman CD, Axelrad DM (2014b) Mercury bioaccumulation factors and spurious correlations. Sci Total Environ 496:vi–xii

    Article  CAS  PubMed  Google Scholar 

  • Pollman CD et al (1995) Overview of the Florida Atmospheric Mercury Study (FAMS). Water Air Soil Pollut 80:285–290

    Article  CAS  Google Scholar 

  • Porcella D, Zillioux E, Grieb T, Newman J, West G (2004) Retrospective study of mercury in raccoons (Procyon lotor) in South Florida. Ecotoxicology 13:207–221

    Article  CAS  PubMed  Google Scholar 

  • Qualls RG, Richardson CJ, Sherwood LJ (2001) Soil reduction-oxidation potential along a nutrient-enrichment gradient in the Everglades. Wetlands 21:403–411

    Article  Google Scholar 

  • Ravichandran M, Aiken GR, Reddy MM, Ryan JN (1998) Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades. Environ Sci Technol 32:3305–3311

    Article  CAS  Google Scholar 

  • Renner R (2001) Everglades mercury debate. Environ Sci Technol 35:59A–60A

    Article  CAS  Google Scholar 

  • Riget F et al (2007) Transfer of mercury in the marine food web of West Greenland. J Environ Monit 9:877–883

    Article  CAS  PubMed  Google Scholar 

  • Roelke ME, Schultz DP, Facemire CF, Sundlof SF, Royals HE (1991) Mercury contamination in Florida panthers. Report of the Florida Panther Technical Subcommittee to the Florida Panther Interagency Committee

    Google Scholar 

  • Rood B, Gottgens J, Delfino J, Earle C, Crisman T (1995) Mercury accumulation trends in Florida Everglades and savannas marsh flooded soils. In: Mercury as a global pollutant. Springer, Berlin, pp 981–990

    Chapter  Google Scholar 

  • Rumbold DG (2005a) Optimization of the District’s mercury monitoring networks: a proposed strategy. South Florida Water Management District, West Palm Beach, FL. Dated 17 Feb 2005

    Google Scholar 

  • Rumbold DG (2005b) A probabilistic risk assessment of the effects of methylmercury on great egrets and bald eagles foraging at a constructed wetland in South Florida relative to the Everglades. Hum Ecol Risk Assess 11:365–388

    Article  CAS  Google Scholar 

  • Rumbold D, Fink L (2003a) Report on project HGOS: program to monitor concentrations of total mercury and methylmercury in surface water at various water control structures and marshes in South Florida. South Florida Water Management District, West Palm Beach, FL, 12 p

    Google Scholar 

  • Rumbold DG, Fink L (2003b) Annual permit compliance monitoring report for mercury in downstream receiving waters of the Everglades Protection Area. Appendix 2B-3 in 2003 Everglades consolidated report. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Rumbold DG, Fink LE (2006) Extreme spatial variability and unprecedented methylmercury concentrations within a constructed wetland. Environ Monit Assess 112:115–135

    Article  CAS  PubMed  Google Scholar 

  • Rumbold DG, Fink L, Laine K, Matson F, Niemczyk S, Rawlink P (2001a) Appendix 7-9: annual permit compliance monitoring report for mercury in stormwater treatment areas and downstream receiving waters of the Everglades Protection Area. In: 2001 Everglades consolidated report. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Rumbold DG, Niemczyk SL, Fink LE, Chandrasekhar T, Harkanson B, Laine KA (2001b) Mercury in eggs and feathers of great egrets (Ardea albus) from the Florida Everglades. Arch Environ Contam Toxicol 41:501–507

    Article  CAS  PubMed  Google Scholar 

  • Rumbold DG et al (2002) Levels of mercury in alligators (Alligator mississippiensis) collected along a transect through the Florida Everglades. Sci Total Environ 297:239–252

    Article  CAS  PubMed  Google Scholar 

  • Rumbold DG et al (2006) Appendix 4-4: annual permit compliance monitoring report for mercury in stormwater treatment areas. In: 2006 South Florida environmental report, volume 1. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Rumbold DG et al (2007) Appendix 5-5: annual permit compliance monitoring report for mercury in stormwater treatment areas. In: 2007 South Florida environmental report—volume 1. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Rumbold DG et al (2011) Source identification of Florida Bay’s methylmercury problem: mainland runoff versus atmospheric deposition and in situ production. Estuar Coasts 34:494–513

    Article  CAS  Google Scholar 

  • Rumbold DG, Lange TR, Richard D, DelPizzo G, Hass N (2018) Mercury biomagnification through food webs along a salinity gradient down-estuary from a biological hotspot. Estuar Coast Shelf Sci 200:116–125

    Article  CAS  Google Scholar 

  • Sackett DK, Aday DD, Rice JA, Cope WG (2009) A statewide assessment of mercury dynamics in North Carolina water bodies and fish. Trans Am Fish Soc 138:1328–1341

    Article  CAS  Google Scholar 

  • Scheidt DJ, Kalla PI (2007) Everglades ecosystem assessment: water management and quality, eutrophication, mercury contamination, soils and habitat: monitoring for adaptive management: a R-EMAP status report. USEPA region 4, Athens, GA. EPA 904-R-07-001, 98 p

    Google Scholar 

  • Schueneman TJ (2001) Characterization of sulfur sources in the EAA. Soil Crop Sci Soc Fla Proc 60:49–52

    Google Scholar 

  • SFWMD (2014a) Appendix 1-2: peer-review and public comments on draft volume I. In: 2014 South Florida environmental report. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • SFWMD (2014b) Appendix 1-3: authors’ responses to peer-review panel and public comments 2014 South Florida environmental report. South Florida Water Management District, West Palm Beach, FL

    Google Scholar 

  • Shanley JB et al (2012) MERGANSER: an empirical model to predict fish and loon mercury in New England Lakes. Environ Sci Technol 46:4641–4648

    Article  CAS  PubMed  Google Scholar 

  • Shull D, Pulket M (2015) Causal analysis of the smallmouth bass decline in the Susquehanna and Juniata Rivers. Pennsylvania Department of Environmental Protection, Harrisburg, PA

    Google Scholar 

  • Staveley JP, Law SA, Fairbrother A, Menzie CA (2014) A causal analysis of observed declines in managed honey bees (Apis mellifera). Hum Ecol Risk Assess Int J 20:566–591

    Article  CAS  Google Scholar 

  • Stober QJ et al (1996) South Florida ecosystem assessment interim report. United States Environmental Protection Agency report # 904-R-96-008, 27 p

    Google Scholar 

  • Stober QJ et al (1998) South Florida ecosystem assessment: monitoring for ecosystem restoration. Final technical report—phase I. EPA 904-R-98-002. USEPA Region 4 Science and Ecosystem Support Division and Office of Research and Development. Athens, GA, 285 p. Plus appendices

    Google Scholar 

  • Stober QJ et al (2001) South Florida ecosystem assessment: phase I/II—Everglades stressor interactions: hydropatterns, eutrophication, habitat alteration, and mercury contamination. U.S. Environmental Protection Agency report # 904-R-01-002, 63 p

    Google Scholar 

  • Superville P-J, Pižeta I, Omanović D, Billon G (2013) Identification and on-line monitoring of reduced Sulphur species (RSS) by voltammetry in oxic waters. Talanta 112:55–62

    Article  CAS  PubMed  Google Scholar 

  • Suter GW (2007) Ecological risk assessment, 2nd edn. CRC, Boca Raton, FL, p 643

    Google Scholar 

  • Suter GW, Norton SB, Cormier SM (2002) A methodology for inferring the causes of observed impairments in aquatic ecosystems. Environ Toxicol Chem 21:1101–1111

    Article  CAS  PubMed  Google Scholar 

  • Suter GW, Norton SB, Cormier SM (2010) The science and philosophy of a method for assessing environmental causes. Hum Ecol Risk Assess 16:19–34

    Article  CAS  Google Scholar 

  • Thomas CR, Miao S, Sindhoj E (2009) Environmental factors affecting temporal and spatial patterns of soil redox potential in Florida Everglades wetlands. Wetlands 29:1133–1145

    Article  Google Scholar 

  • Vorenhout M, van der Geest HG, Hunting ER (2011) An improved datalogger and novel probes for continuous redox measurements in wetlands. Int J Environ Anal Chem 91:801–810

    Article  CAS  Google Scholar 

  • Ware FJ, Royals H, Lange T (1990) Mercury contamination in Florida largemouth bass. Proc Ann Conf Southeast Assoc Fish Wildlife Agencies 44:5–12

    Google Scholar 

  • Warner KA, Roden EE, Bonzongo J-C (2003) Microbial mercury transformation in anoxic freshwater sediments under iron-reducing and other electron-accepting conditions. Environ Toxicol Chem 37:2159–2165

    CAS  Google Scholar 

  • Watras C, Morrison K, Regnell O, Kratz T (2006) The methylmercury cycle in Little Rock Lake during experimental acidification and recovery. Limnol Oceanogr 51:257–270

    Article  CAS  Google Scholar 

  • Wiener JG et al (2006) Mercury in soils, lakes, and fish in Voyageurs National Park (Minnesota): importance of atmospheric deposition and ecosystem factors. Environ Toxicol Chem 40(20):6261–6268

    CAS  Google Scholar 

  • Winfrey MR, Rudd JW (1990) Environmental factors affecting the formation of methylmercury in low pH lakes. Environ Toxicol Chem 9:853–869

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren G. Rumbold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rumbold, D.G. (2019). A Causal Analysis for the Dominant Factor in the Extreme Geographic and Temporal Variability in Mercury Biomagnification in the Everglades. In: Rumbold, D., Pollman, C., Axelrad, D. (eds) Mercury and the Everglades. A Synthesis and Model for Complex Ecosystem Restoration. Springer, Cham. https://doi.org/10.1007/978-3-030-32057-7_3

Download citation

Publish with us

Policies and ethics