Skip to main content

Vegetation Change

  • Chapter
  • First Online:
Thawing Permafrost
  • 2375 Accesses

Abstract

Vegetation in permafrost areas is already changing as a result of climate change. Since vegetation strongly affects the heat balance of permafrost soils and the amount of ecosystem carbon in soils and biomass, this is an important aspect of the permafrost carbon cycle. Zonal vegetation change is currently showing mostly as shrub expansion in the southern parts of the tundra biome, while northward migration of the tree line is lagging behind. Satellite remote sensing has recorded this ‘Arctic greening’, but it is not uniform throughout the Arctic – also ‘browning’ occurs regionally for various reasons; amongst these are the effects of regional climate variation and effects of permafrost thaw. A larger vegetation biomass does not necessarily result in a larger soil carbon content; in some cases a decrease or depth shifts of soil carbon have been reported. Wildfires that may induce permafrost thaw are expected to increase in case of drier and warmer climates; this includes tundra fires.

Permafrost thaw and decomposition of thawed organic matter liberates nutrients, but it depends on plant traits to what extent the additional nutrients increase the vegetation and biomass. Abrupt permafrost thaw results in severe ecosystem disturbance. Ecosystems are resilient to a certain amount of disturbance, although these disturbances results in large soil carbon losses that only can be regained in time scales of centuries to millennia, and in particular the ‘certain amount of disturbance’ needs assessment. Superposed on the effects of climate change are other anthropogenic disturbances of ecosystems that affect permafrost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott BW, Jones JB, Schuur EA, Chapin FS III, Bowden WB, Bret-Harte MS, Epstein HE, Flannigan MD, Harms TK, Hollingsworth TN (2016) Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environ Res Lett 11(3):034014. https://doi.org/10.1088/1748-9326/11/3/034014

    Article  Google Scholar 

  • ACIA (2004) Impacts of a warming Arctic. Cambridge, Arctic climate impact assessment, 144 p

    Google Scholar 

  • Aerts R (2006) The freezer defrosting: global warming and litter decomposition rates in cold biomes. J Ecol 94(4):713–724

    Article  Google Scholar 

  • Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1(1):95–111

    Article  Google Scholar 

  • Alexander HD, Mack MC, Goetz S, Loranty MM, Beck PS, Earl K, Zimov S, Davydov S, Thompson CC (2012) Carbon accumulation patterns during post-fire succession in cajander larch (Larix cajanderi) forests of Siberia. Ecosystems 15(7):1065–1082

    Article  Google Scholar 

  • Andresen CG, Lara MJ, Tweedie CE, Lougheed VL (2017) Rising plant-mediated methane emissions from arctic wetlands. Glob Chang Biol 23(3):1128–1139

    Article  Google Scholar 

  • Anisimov O, Reneva S (2006) Permafrost and changing climate: the Russian perspective. AMBIO J Hum Environ 35(4):169–176

    Article  Google Scholar 

  • Balshi MS, McGuire AD, Duffy P, Flannigan M, Kicklighter DW, Melillo J (2009) Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century. Glob Chang Biol 15(6):1491–1510

    Article  Google Scholar 

  • Balzter H, Gerard FF, George CT, Rowland CS, Jupp TE, McCallum I, Shvidenko A, Nilsson S, Sukhinin A, Onuchin A (2005) Impact of the Arctic oscillation pattern on interannual forest fire variability in Central Siberia. Geophys Res Lett 32(14):L14709. https://doi.org/10.1029/2005GL022526

    Article  Google Scholar 

  • Bartsch A, Balzter H, George C (2009) The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites. Environ Res Lett 4(4):045021. https://doi.org/10.1088/1748-9326/4/4/045021

    Article  Google Scholar 

  • Beilman DW, Vitt DH, Halsey LA (2001) Localized permafrost peatlands in western Canada: definition, distributions, and degradation. Arct Antarct Alp Res 33(1):70–77

    Article  Google Scholar 

  • Beringer J, Chapin FS, Thompson CC, McGuire AD (2005) Surface energy exchanges along a tundra-forest transition and feedbacks to climate. Agric For Meteorol 131(3):143–161

    Article  Google Scholar 

  • Bernal B, McKinley DC, Hungate BA, White PM, Mozdzer TJ, Megonigal JP (2016) Limits to soil carbon stability; deep, ancient soil carbon decomposition stimulated by new labile organic inputs. Soil Biol Biochem 98:85–94

    Article  Google Scholar 

  • Berteaux D, Réale D, McAdam AG, Boutin S (2004) Keeping pace with fast climate change: can arctic life count on evolution? Integr Comp Biol 44(2):140–151

    Article  Google Scholar 

  • Bhatt US, Walker DA, Raynolds MK, Comiso JC, Epstein HE, Jia G, Gens R, Pinzon JE, Tucker CJ, Tweedie CE (2010) Circumpolar Arctic tundra vegetation change is linked to sea ice decline. Earth Interact 14(8):1–20

    Article  Google Scholar 

  • Bhatt U, Walker D, Raynolds M, Bieniek P, Epstein H, Comiso J, Pinzon J, Tucker C, Polyakov I (2013) Recent declines in warming and vegetation greening trends over pan-Arctic tundra. Remote Sens 5(9):4229–4254

    Article  Google Scholar 

  • Bigelow NH, Brubaker LB, Edwards ME, Harrison SP, Prentice IC, Anderson PM, Andreev AA, Bartlein PJ, Christensen TR, Cramer W (2003) Climate change and Arctic ecosystems: 1. Vegetation changes north of 55° N between the last glacial maximum, mid-Holocene, and present. J Geophys Res Atmos 108(D19):8170. https://doi.org/10.1029/2002JD002558

  • Bliss L, Henry G, Svoboda J, Bliss D (1994) Patterns of plant distribution within two polar desert landscapes. Arct Alp Res 26(1):46–55

    Article  Google Scholar 

  • Blok D, Heijmans MM, Schaepman-Strub G, Kononov A, Maximov T, Berendse F (2010) Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Glob Chang Biol 16(4):1296–1305

    Article  Google Scholar 

  • Blok D, Sass-Klaassen U, Schaepman-Strub G, Heijmans M, Sauren P, Berendse F (2011a) What are the main climate drivers for shrub growth in Northeastern Siberian tundra? Biogeosciences 8(5):1169–1179

    Article  Google Scholar 

  • Blok D, Heijmans MMPD, Schaepman-Strub G, van Ruijven J, Parmentier FJW, Maximov TC, Berendse F (2011b) The cooling capacity of mosses: controls on water and energy fluxes in a Siberian tundra site. Ecosystems 14(7):1055–1065. https://doi.org/10.1007/s10021-011-9463-5

    Article  Google Scholar 

  • Blume-Werry G, Wilson SD, Kreyling J, Milbau A (2016) The hidden season: growing season is 50% longer below than above ground along an arctic elevation gradient. New Phytol 209(3):978–986

    Article  Google Scholar 

  • Boike J, Wille C, Abnizova A (2008) Climatology and summer energy and water balance of polygonal tundra in the Lena River Delta, Siberia. J Geophys Res 113(G3). https://doi.org/10.1029/2007jg000540

  • Bokhorst S, Bjerke JW, Street L, Callaghan TV, Phoenix GK (2011) Impacts of multiple extreme winter warming events on sub-Arctic heathland: phenology, reproduction, growth, and CO2 flux responses. Glob Chang Biol 17(9):2817–2830

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320(5882):1444–1449

    Article  Google Scholar 

  • Bonan GB, Chapin FS, Thompson SL (1995) Boreal forest and tundra ecosystems as components of the climate system. Clim Chang 29(2):145–167

    Article  Google Scholar 

  • Briggs MA, Walvoord MA, McKenzie JM, Voss CI, Day-Lewis FD, Lane JW (2014) New permafrost is forming around shrinking Arctic lakes, but will it last? Geophys Res Lett 41(5):1585–1592

    Article  Google Scholar 

  • Budishchev A, Mi Y, van Huissteden J, Belelli-Marchesini L, Schaepman-Strub G, Parmentier FJW, Fratini G, Gallagher A, Maximov TC, Dolman AJ (2014) Evaluation of a plot-scale methane emission model using eddy covariance observations and footprint modelling. Biogeosciences 11(17):4651–4664. https://doi.org/10.5194/bg-11-4651-2014

    Article  Google Scholar 

  • Burn C, Friele P (1989) Geomorphology, vegetation succession, soil characteristics and permafrost in retrogressive thaw slumps near Mayo, Yukon territory. Arctic 42(1):31–40

    Article  Google Scholar 

  • Camill P, Lynch JA, Clark JS, Adams JB, Jordan B (2001) Changes in biomass, aboveground net primary production, and peat accumulation following permafrost thaw in the boreal peatlands of Manitoba, Canada. Ecosystems 4(5):461–478

    Article  Google Scholar 

  • Chambers S, Beringer J, Randerson J, Chapin Iii F (2005) Fire effects on net radiation and energy partitioning: contrasting responses of tundra and boreal forest ecosystems. J Geophys Res Atmos 110(D9):D09106. https://doi.org/10.1029/2004JD005299

    Article  Google Scholar 

  • Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11(1):233–260

    Article  Google Scholar 

  • Chapin F III, Barsdate R, Barel D (1978) Phosphorus cycling in Alaskan coastal tundra: a hypothesis for the regulation of nutrient cycling. Oikos:189–199

    Google Scholar 

  • Chapin FS, Sturm M, Serreze MC, McFadden J, Key J, Lloyd A, McGuire A, Rupp T, Lynch A, Schimel JP (2005) Role of land-surface changes in Arctic summer warming. Science 310 (5748):657-660

    Article  Google Scholar 

  • Chapin F, McGuire AD, Ruess RW, Hollingsworth TN, Mack M, Johnstone J, Kasischke E, Euskirchen E, Jones J, Jorgenson M (2010) Resilience of Alaska’s boreal forest to climatic change. Can J For Res 40(7):1360–1370

    Article  Google Scholar 

  • Christensen TR, Johansson T, Åkerman HJ, Mastepanov M, Malmer N, Friborg T, Crill P, Svensson BH (2004) Thawing sub-arctic permafrost: effects on vegetation and methane emissions. Geophys Res Lett 31(4):L04501. https://doi.org/10.1029/2003GL018680

    Article  Google Scholar 

  • Cooper E (2011) Polar desert vegetation and plant recruitment in Murchisonfjord, Nordaustlandet, Svalbard. Geogr Ann Ser B 93(4):243–252

    Article  Google Scholar 

  • Cornelissen JHC, Callaghan TV, Alatalo J, Michelsen A, Graglia E, Hartley A, Hik D, Hobbie S, Press M, Robinson CH (2001) Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass? J Ecol 89(6):984–994

    Article  Google Scholar 

  • Cornelissen JH, Van Bodegom PM, Aerts R, Callaghan TV, Van Logtestijn RS, Alatalo J, Stuart Chapin F, Gerdol R, Gudmundsson J, Gwynn-Jones D (2007a) Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol Lett 10(7):619–627

    Article  Google Scholar 

  • Cornelissen JH, Lang SI, Soudzilovskaia NA, During HJ (2007b) Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot 99(5):987–1001

    Article  Google Scholar 

  • Dolman A, Shvidenko A, Schepaschenko D, Ciais P, Tchebakova N, Chen T, Van Der Molen M, Belelli Marchesini L, Maximov T, Maksyutov S (2012) An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods. Biogeosciences 9(12):5323–5340

    Article  Google Scholar 

  • Dorrepaal E, Aerts R, Cornelissen JH, Callaghan TV, Van Logtestijn RS (2004) Summer warming and increased winter snow cover affect Sphagnum fuscum growth, structure and production in a sub-arctic bog. Glob Chang Biol 10(1):93–104

    Article  Google Scholar 

  • Dorrepaal E, Cornelissen JH, Aerts R (2007) Changing leaf litter feedbacks on plant production across contrasting sub-arctic peatland species and growth forms. Oecologia 151(2):251–261

    Article  Google Scholar 

  • Elberling B, Balić-Žunić T, Edsberg A (2003) Spatial variations and controls of acid mine drainage generation. Environ Geol 43(7):806–813

    Article  Google Scholar 

  • Elmendorf SC, Henry GH, Hollister RD, Björk RG, Boulanger-Lapointe N, Cooper EJ, Cornelissen JH, Day TA, Dorrepaal E, Elumeeva TG (2012) Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat Clim Chang 2(6):453

    Article  Google Scholar 

  • Epstein HE, Raynolds MK, Walker DA, Bhatt US, Tucker CJ, Pinzon JE (2012) Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades. Environ Res Lett 7(1):015506

    Article  Google Scholar 

  • Epstein J, Bhatt U, Raynolds MK, Walker DA, Bieniek PA, Tucker CJ, Pinzon J, Myers-Smith IH, Forbes BC, Macias-Fauria M, Boelman NT, Sweet SK (2015) Tundra greenness. NOAA Arctic report card. https://arctic.noaa.gov/portals/7/arcticreportcard/documents/arcticreportcard_full_report2015.pdf

  • Epstein J, Bhatt U, Raynolds M, Walker D, Forbes B, Phoenix G, Bjerke J, Tommervik H, Karlsen SR, Myneni R, Park T, Goetz S, Jia G (2018) Tundra greenness. NOAA Arctic report card. https://arctic.noaa.gov/Report-Card/Report-Card-2018

  • Erisman JW, Galloway J, Seitzinger S, Bleeker A, Butterbach-Bahl K (2011) Reactive nitrogen in the environment and its effect on climate change. Curr Opin Environ Sustain 3(5):281–290

    Article  Google Scholar 

  • Euskirchen E, McGuire A, Chapin F III (2007) Energy feedbacks of northern high-latitude ecosystems to the climate system due to reduced snow cover during 20th century warming. Glob Chang Biol 13(11):2425–2438

    Article  Google Scholar 

  • Fedorov A, Konstantinov P, Bashirin N, Desyatkin R, Iijima Y, Park H, Ulrich M, Sejourne A, Cosard F, Grenier C, Hiyama T, Iwahana G ( 2016) Climate warming and human-induced thermokarst activity in Central Yakutia and its social response. In: Günther F, Morgenstern A (eds) Tenth International Conference on Permafrost (XI ICOP), 20–24 June 2016, Potsdam, Germany, pp 1200–1201. https://doi.org/10.2312/GFZ.LIS.2016.001

  • Filler DM, Van Stempvoort DR, Leigh MB (2009) Remediation of frozen ground contaminated with petroleum hydrocarbons: feasibility and limits. In: Margesin R (ed) Permafrost soils, Soil biology, vol 16. Springer, Heidelberg, pp 279–301

    Chapter  Google Scholar 

  • Fisher JP, Estop-Aragonés C, Thierry A, Charman DJ, Wolfe SA, Hartley IP, Murton JB, Williams M, Phoenix GK (2016) The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest. Glob Chang Biol 22(9):3127–3140

    Article  Google Scholar 

  • Fisichelli NA, Frelich LE, Reich PB (2014) Temperate tree expansion into adjacent boreal forest patches facilitated by warmer temperatures. Ecography 37(2):152–161

    Article  Google Scholar 

  • Flannigan MD, Stocks BJ, Wotton BM (2000) Climate change and forest fires. Sci Total Environ 262(3):221–229

    Article  Google Scholar 

  • Flannigan MD, Logan KA, Amiro BD, Skinner WR, Stocks B (2005) Future area burned in Canada. Clim Chang 72(1–2):1–16

    Article  Google Scholar 

  • Flannigan M, Stocks B, Turetsky M, Wotton M (2009) Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob Chang Biol 15(3):549–560

    Article  Google Scholar 

  • Forkel M, Thonicke K, Beer C, Cramer W, Bartalev S, Schmullius C (2012) Extreme fire events are related to previous-year surface moisture conditions in permafrost-underlain larch forests of Siberia. Environ Res Lett 7(4):044021

    Article  Google Scholar 

  • French HM (2018) The periglacial environment. John Wiley & Sons ltd, Oxford 515 p

    Google Scholar 

  • Freschet GT, Cornelissen JH, Van Logtestijn RS, Aerts R (2010a) Evidence of the ‘plant economics spectrum’in a subarctic flora. J Ecol 98(2):362–373

    Article  Google Scholar 

  • Freschet GT, Cornelissen JH, van Logtestijn RS, Aerts R (2010b) Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits? New Phytol 186(4):879–889

    Article  Google Scholar 

  • Freschet GT, Aerts R, Cornelissen JH (2012a) A plant economics spectrum of litter decomposability. Funct Ecol 26(1):56–65

    Article  Google Scholar 

  • Freschet GT, Aerts R, Cornelissen JH (2012b) Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. J Ecol 100(3):619–630

    Article  Google Scholar 

  • Frost GV, Epstein HE (2014) Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Glob Chang Biol 20(4):1264–1277

    Article  Google Scholar 

  • Frost GV, Epstein HE, Walker DA, Matyshak G, Ermokhina K (2013) Patterned-ground facilitates shrub expansion in low Arctic tundra. Environ Res Lett 8(1):015035

    Article  Google Scholar 

  • Gauthier S, Bernier P, Kuuluvainen T, Shvidenko A, Schepaschenko D (2015) Boreal forest health and global change. Science 349(6250):819–822

    Article  Google Scholar 

  • Giglio L, Randerson JT, van der Werf GR (2013) Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J Geophys Res Biogeo 118(1):317–328

    Article  Google Scholar 

  • Gorchakov G, Sitnov S, Sviridenkov M, Semoutnikova E, Emilenko A, Isakov A, Kopeikin V, Karpov A, Gorchakova I, Verichev K (2014) Satellite and ground-based monitoring of smoke in the atmosphere during the summer wildfires in European Russia in 2010 and Siberia in 2012. Int J Remote Sens 35(15):5698–5721

    Google Scholar 

  • Gordon C, Wynn J, Woodin SJ (2001) Impacts of increased nitrogen supply on high Arctic heath: the importance of bryophytes and phosphorus availability. New Phytol 149(3):461–471

    Article  Google Scholar 

  • Gough L, Hobbie SE (2003) Responses of moist non-acidic arctic tundra to altered environment: productivity, biomass, and species richness. Oikos 103(1):204–216

    Article  Google Scholar 

  • Grosse G, Harden J, Turetsky M, McGuire AD, Camill P, Tarnocai C, Frolking S, Schuur EAG, Jorgenson T, Marchenko S, Romanovsky V, Wickland KP, French N, Waldrop M, Bourgeau-Chavez L, Striegl RG (2011) Vulnerability of high-latitude soil organic carbon in North America to disturbance. J Geophys Res 116. https://doi.org/10.1029/2010jg001507

  • Guggenberger G, Rodionov A, Shibistova O, Grabe M, Kasansky OA, Fuchs H, Mikheyeva N, Zrazhevskaya G, Flessa H (2008) Storage and mobility of black carbon in permafrost soils of the forest tundra ecotone in northern Siberia. Glob Chang Biol 14(6):1367–1381

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 dataset. Int J Climatol 34(3):623–642

    Article  Google Scholar 

  • Hartley IP, Garnett MH, Sommerkorn M, Hopkins DW, Fletcher BJ, Sloan VL, Phoenix GK, Wookey PA (2012) A potential loss of carbon associated with greater plant growth in the European Arctic. Nat Clim Chang 2(12):875

    Article  Google Scholar 

  • Hedenås H, Olsson H, Jonasson C, Bergstedt J, Dahlberg U, Callaghan TV (2011) Changes in tree growth, biomass and vegetation over a 13-year period in the Swedish sub-Arctic. Ambio 40(6):672

    Article  Google Scholar 

  • Hicks Pries CE, Schuur EA, Crummer KG (2013) Thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning ecosystem respiration using δ13C and 14C. Glob Chang Biol 19(2):649–661. https://doi.org/10.1111/gcb.12058

    Article  Google Scholar 

  • Higuera PE, Chipman ML, Barnes JL, Urban MA, Hu FS (2011) Variability of tundra fire regimes in Arctic Alaska: millennial-scale patterns and ecological implications. Ecol Appl 21(8):3211–3226

    Article  Google Scholar 

  • Hjort J, Karjalainen O, Aalto J, Westermann S, Romanovsky VE, Nelson FE, Etzelmüller B, Luoto M (2018) Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat Commun 9(1):5147

    Article  Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66(4):503–522

    Article  Google Scholar 

  • Hobbie SE, Schimel JP, Trumbore SE, Randerson JR (2000) Controls over carbon storage and turnover in high-latitude soils. Glob Chang Biol 6(S1):196–210

    Article  Google Scholar 

  • Hobbie SE, Nadelhoffer KJ, Högberg P (2002) A synthesis: the role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant Soil 242(1):163–170

    Article  Google Scholar 

  • Hodgkins SB, Tfaily MM, McCalley CK, Logan TA, Crill PM, Saleska SR, Rich VI, Chanton JP (2014) Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. Proc Natl Acad Sci U S A 111(16):5819–5824. https://doi.org/10.1073/pnas.1314641111

    Article  Google Scholar 

  • Hu FS, Higuera PE, Duffy P, Chipman ML, Rocha AV, Young AM, Kelly R, Dietze MC (2015) Arctic tundra fires: natural variability and responses to climate change. Front Ecol Environ 13(7):369–377

    Article  Google Scholar 

  • Iijima Y, Fedorov AN, Park H, Suzuki K, Yabuki H, Maximov TC, Ohata T (2010) Abrupt increases in soil temperatures following increased precipitation in a permafrost region, Central Lena River basin, Russia. Permafr Periglac Process 21(1):30–41. https://doi.org/10.1002/ppp.662

    Article  Google Scholar 

  • Iijima Y, Ohta T, Kotani A, Fedorov AN, Kodama Y, Maximov TC (2014) Sap flow changes in relation to permafrost degradation under increasing precipitation in an eastern Siberian larch forest. Ecohydrology 7(2):177–187

    Article  Google Scholar 

  • Iversen CM, Sloan VL, Sullivan PF, Euskirchen ES, McGuire AD, Norby RJ, Walker AP, Warren JM, Wullschleger SD (2015) The unseen iceberg: plant roots in arctic tundra. New Phytol 205(1):34–58

    Article  Google Scholar 

  • Iwahana G, Machimura T, Kobayashi Y, Fedorov AN, Konstantinov PY, Fukuda M (2005) Influence of forest clear-cutting on the thermal and hydrological regime of the active layer near Yakutsk, eastern Siberia. J Geophys Res Biogeo 110(G2):G02004. https://doi.org/10.1029/2005JG000039

    Article  Google Scholar 

  • Jafarov EE, Romanovsky VE, Genet H, McGuire AD, Marchenko SS (2013) The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate. Environ Res Lett 8(3):035030

    Article  Google Scholar 

  • Jernelöv A (2010) The threats from oil spills: now, then, and in the future. Ambio 39(5–6):353–366

    Article  Google Scholar 

  • Johansson T, Malmer N, Crill PM, Friborg T, Aakerman JH, Mastepanov M, Christensen TR (2006) Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing. Glob Chang Biol 12(12):2352–2369

    Article  Google Scholar 

  • Johansson M, Callaghan TV, Bosiö J, Åkerman HJ, Jackowicz-Korczynski M, Christensen TR (2013) Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub-arctic Sweden. Environ Res Lett 8(3):035025. https://doi.org/10.1088/1748-9326/8/3/035025

    Article  Google Scholar 

  • Johnstone JF (2006) Response of boreal plant communities to variations in previous fire-free interval. Int J Wildland Fire 15(4):497–508

    Article  Google Scholar 

  • Johnstone JF, Chapin FS, Hollingsworth TN, Mack MC, Romanovsky V, Turetsky M (2010) Fire, climate change, and forest resilience in interior Alaska. Can J For Res 40(7):1302–1312

    Article  Google Scholar 

  • Jones BM, Breen AL, Gaglioti BV, Mann DH, Rocha AV, Grosse G, Arp CD, Kunz ML, Walker DA (2013) Identification of unrecognized tundra fire events on the north slope of Alaska. J Geophys Res Biogeo 118(3):1334–1344

    Article  Google Scholar 

  • Jones BM, Grosse G, Arp CD, Miller E, Liu L, Hayes DJ, Larsen CF (2015) Recent Arctic tundra fire initiates widespread thermokarst development. Sci Rep 5:15865

    Article  Google Scholar 

  • Jorgenson MT, Racine CH, Walters JC, Osterkamp TE (2001) Permafrost degradation and ecological changes associated with a warmingclimate in Central Alaska. Clim Chang 48(4):551–579

    Article  Google Scholar 

  • Jorgenson MT, Romanovsky V, Harden J, Shur Y, O’Donnell J, Schuur EA, Kanevskiy M, Marchenko S (2010) Resilience and vulnerability of permafrost to climate change. Can J For Res 40(7):1219–1236

    Article  Google Scholar 

  • Jorgenson MT, Harden J, Kanevskiy M, O’Donnell J, Wickland K, Ewing S, Manies K, Zhuang Q, Shur Y, Striegl R (2013) Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes. Environ Res Lett 8(3):035017

    Article  Google Scholar 

  • Jorgenson M, Kanevskiy M, Shur Y, Moskalenko N, Brown D, Wickland K, Striegl R, Koch J (2015) Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization. J Geophys Res Earth 120(11):2280–2297. https://doi.org/10.1002/2015JF003602

    Article  Google Scholar 

  • Jupp TE, Taylor CM, Balzter H, George CT (2006) A statistical model linking Siberian forest fire scars with early summer rainfall anomalies. Geophys Res Lett 33(14)

    Google Scholar 

  • Juszak I, Eugster W, Heijmans MM, Schaepman-Strub G (2016) Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra. Biogeosciences 13(13):4049–4064

    Article  Google Scholar 

  • Juszak I, Iturrate-Garcia M, Gastellu-Etchegorry J-P, Schaepman ME, Maximov TC, Schaepman-Strub G (2017) Drivers of shortwave radiation fluxes in Arctic tundra across scales. Remote Sens Environ 193:86–102

    Article  Google Scholar 

  • Kade A, Walker DA, Raynolds MK (2005) Plant communities and soils in cryoturbated tundra along a bioclimate gradient in the low Arctic, Alaska. Phytocoenologia 35(4):761–820

    Article  Google Scholar 

  • Kanevskiy M, Shur Y, Jorgenson T, Brown DNR, Moskalenko N, Brown J, Walker DA, Raynolds MK, Buchhorn M (2017) Degradation and stabilization of ice wedges: implications for assessing risk of thermokarst in northern Alaska. Geomorphology 297:20–42

    Article  Google Scholar 

  • Kaplan JO, Bigelow NH, Prentice IC, Harrison SP, Bartlein PJ, Christensen TR, Cramer W, Matveyeva NV, McGuire AD, Murray DF (2003) Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. J Geophys Res Atmos 108 (D19)

    Google Scholar 

  • Karion A, Sweeney C, Pétron G, Frost G, Michael Hardesty R, Kofler J, Miller BR, Newberger T, Wolter S, Banta R (2013) Methane emissions estimate from airborne measurements over a western United States natural gas field. Geophys Res Lett 40(16):4393–4397

    Article  Google Scholar 

  • Kasischke ES, Turetsky MR (2006) Recent changes in the fire regime across the north American boreal region—spatial and temporal patterns of burning across Canada and Alaska. Geophys Res Lett 33(9):L09703. https://doi.org/10.1029/2006GL025677

    Article  Google Scholar 

  • Kasischke ES, Hyer EJ, Novelli PC, Bruhwiler LP, French NH, Sukhinin AI, Hewson JH, Stocks BJ (2005) Influences of boreal fire emissions on northern hemisphere atmospheric carbon and carbon monoxide. Glob Biogeochem Cycles 19(1):GB1012. https://doi.org/10.1029/2004GB002300

    Article  Google Scholar 

  • Kasischke ES, Verbyla DL, Rupp TS, McGuire AD, Murphy KA, Jandt R, Barnes JL, Hoy EE, Duffy PA, Calef M (2010) Alaska’s changing fire regime—implications for the vulnerability of its boreal forests. Can J For Res 40(7):1313–1324

    Article  Google Scholar 

  • Katamura F, Fukuda M, Bosikov NP, Desyatkin RV (2009) Charcoal records from thermokarst deposits in central Yakutia, eastern Siberia: implications for forest fire history and thermokarst development. Quat Res 71(1):36–40

    Article  Google Scholar 

  • Kauppi PE, Rautiainen A, Korhonen KT, Lehtonen A, Liski J, Nöjd P, Tuominen S, Haakana M, Virtanen T (2010) Changing stock of biomass carbon in a boreal forest over 93 years. For Ecol Manag 259(7):1239–1244

    Article  Google Scholar 

  • Keuper F, Dorrepaal E, Van Bodegom PM, Aerts R, Van Logtestijn RS, Callaghan TV, Cornelissen JH (2011) A race for space? How Sphagnum fuscum stabilizes vegetation composition during long-term climate manipulations. Glob Chang Biol 17(6):2162–2171

    Article  Google Scholar 

  • Keuper F, Parmentier FJ, Blok D, van Bodegom PM, Dorrepaal E, van Hal JR, van Logtestijn RS, Aerts R (2012a) Tundra in the rain: differential vegetation responses to three years of experimentally doubled summer precipitation in Siberian shrub and Swedish bog tundra. Ambio 41(Suppl 3):269–280. https://doi.org/10.1007/s13280-012-0305-2

    Article  Google Scholar 

  • Keuper F, Van Bodegom PM, Dorrepaal E, Weedon JT, Van Hal J, Van Logtestijn RS, Aerts R (2012b) A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. Glob Chang Biol 18(6):1998–2007

    Article  Google Scholar 

  • Keuper F, Dorrepaal E, Bodegom P, Logtestijn R, Venhuizen G, Hal J, Aerts R (2014) Foraging the thaw front: increased nutrient uptake at the permafrost surface enhances biomass production of deep-rooting subarctic peatland species. In: Keuper F Direct and indirect effects of climatic changes on vegetation productivity and species composition of permafrost peatlands. Thesis, Department of Ecological Sciences, Faculty of Science, VU University VU University, Amsterdam, pp 67–84

    Google Scholar 

  • Kharuk V, Ranson K, Dvinskya M (2007) Evidence of evergreen conifer invasion into larch dominated forests during recent decades in Central Siberia. Eurasian J Forest Res 10(2):163–171

    Google Scholar 

  • Kharuk VI, Ranson KJ, Dvinskaya ML, Im ST (2011) Wildfires in northern Siberian larch dominated communities. Environ Res Lett 6(4):045208

    Article  Google Scholar 

  • Kip N, van Winden JF, Pan Y, Bodrossy L, Reichart G-J, Smolders AJP, Jetten MSM, Damsté JSS, Op den Camp HJM (2010) Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nat Geosci 3(9):617–621. https://doi.org/10.1038/ngeo939

    Article  Google Scholar 

  • Koch JC, Gurney K, Wipfli MS (2014) Morphology-dependent water budgets and nutrient fluxes in arctic thaw ponds. Permafr Periglac Process 25(2):79–93

    Article  Google Scholar 

  • Koch JC, Jorgenson M, Wickland K, Kanevskiy M, Striegl R (2018) Ice wedge degradation and stabilization impacts water budgets and nutrient cycling in arctic trough ponds. J Geophys Res Biogeo 123:2604–2616. https://doi.org/10.1029/2018JG004528

    Article  Google Scholar 

  • Kondash AJ, Albright E, Vengosh A (2017) Quantity of flowback and produced waters from unconventional oil and gas exploration. Sci Total Environ 574:314–321

    Article  Google Scholar 

  • Kuhry P (1994) The role of fire in the development of Sphagnum-dominated peatlands in western boreal Canada. Journal of Ecology:899–910

    Article  Google Scholar 

  • Kullman L (2002) Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J Ecol 90(1):68–77

    Article  Google Scholar 

  • Kurz WA, Dymond C, Stinson G, Rampley G, Neilson E, Carroll A, Ebata T, Safranyik L (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452(7190):987

    Article  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42(9):1363–1371

    Article  Google Scholar 

  • Lafleur PM, Humphreys ER (2018) Tundra shrub effects on growing season energy and carbon dioxide exchange. Environ Res Lett 13(5):055001

    Article  Google Scholar 

  • Lara M, Villarreal S, Johnson D, Hollister R, Webber P, Tweedie C (2012) Estimated change in tundra ecosystem function near Barrow, Alaska between 1972 and 2010. Environ Res Lett 7(1):015507

    Article  Google Scholar 

  • Lara MJ, McGuire AD, Euskirchen ES, Tweedie CE, Hinkel KM, Skurikhin AN, Romanovsky VE, Grosse G, Bolton WR, Genet H (2015) Polygonal tundra geomorphological change in response to warming alters future CO2 and CH4 flux on the Barrow Peninsula. Glob Chang Biol 21(4):1634–1651. https://doi.org/10.1111/gcb.12757

    Article  Google Scholar 

  • Lara MJ, Nitze I, Grosse G, Martin P, McGuire AD (2018) Reduced arctic tundra productivity linked with landform and climate change interactions. Sci Rep 8(1):2345

    Article  Google Scholar 

  • Leibman M, Kizakov A, Sulerzhitsky L, Zaretskaia N (2003) Dynamics of landslide slopes and their development on Yamal Peninsula. In: Permafrost. Proceedings of the 8th international conference on permafrost. Swets and Zeitlinger, Lisse, 2003. pp 651–656

    Google Scholar 

  • Leibman M, Khomutov A, Kizyakov A (2014) Cryogenic landslides in the West-Siberian plain of Russia: classification, mechanisms, and landforms. In: Landslides in cold regions in the context of climate change. Springer, Cham, pp 143–162

    Google Scholar 

  • Lewkowicz AG, Way RG (2019) Extremes of summer climate trigger thousands of thermokarst landslides in a high Arctic environment. Nat Commun 10(1):1329. https://doi.org/10.1038/s41467-019-09314-7

    Article  Google Scholar 

  • Li B, Heijmans MM, Berendse F, Blok D, Maximov T, Sass-Klaassen U (2016) The role of summer precipitation and summer temperature in establishment and growth of dwarf shrub Betula nana in northeast Siberian tundra. Polar Biol 39(7):1245–1255

    Article  Google Scholar 

  • Li B, Heijmans MM, Blok D, Wang P, Karsanaev SV, Maximov TC, van Huissteden J, Berendse F (2017a) Thaw pond development and initial vegetation succession in experimental plots at a Siberian lowland tundra site. Plant Soil 420(1–2):147–162

    Google Scholar 

  • Li B, Heijmans MMPD, Limpens J, Gallagher A, Van Huissteden J, Maximov TC, Berendse F (2017b) Peat moss carpet reduces methane emission and facilitates shrub expansion in Siberian Arctic tundra. In: Li B (ed) A clash of plants. Vegetation succession and its interaction with permafrost dynamics in the Arctic lowland tundra. PhD thesis, Wageningen, The Netherlands, pp 26–42

    Google Scholar 

  • Liljedahl A, Hinzman L, Busey R, Yoshikawa K (2007) Physical short-term changes after a tussock tundra fire, Seward Peninsula, Alaska. Journal of Geophysical Research: Earth Surface 112 (F2):F02S07. https://doi.org/10.1029/2006JF000554

  • Liljedahl AK, Boike J, Daanen RP, Fedorov AN, Frost GV, Grosse G, Hinzman LD, Iijma Y, Jorgenson JC, Matveyeva N, Necsoiu M, Raynolds MK, Romanovsky VE, Schulla J, Tape KD, Walker DA, Wilson CJ, Yabuki H, Zona D (2016) Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat Geosci 9(4):312–318. https://doi.org/10.1038/ngeo2674

    Article  Google Scholar 

  • Limpens J, Bohlin E, Nilsson MB (2017) Phylogenetic or environmental control on the elemental and organo-chemical composition of Sphagnum mosses? Plant Soil 417(1–2):69–85

    Article  Google Scholar 

  • Liston GE, Sturm M (2002) Winter precipitation patterns in arctic Alaska determined from a blowing-snow model and snow-depth observations. J Hydrometeorol 3(6):646–659

    Article  Google Scholar 

  • Liu L, Schaefer K, Chen A, Gusmeroli A, Zebker H, Zhang T (2015) Remote sensing measurements of thermokarst subsidence using InSAR. J Geophys Res Earth 120(9):1935–1948

    Article  Google Scholar 

  • Loranty MM, Berner LT, Taber ED, Kropp H, Natali SM, Alexander HD, Davydov SP, Zimov NS (2018a) Understory vegetation mediates permafrost active layer dynamics and carbon dioxide fluxes in open-canopy larch forests of northeastern Siberia. PLoS One 13(3):e0194014

    Article  Google Scholar 

  • Loranty MM, Abbott BW, Blok D, Douglas TA, Epstein HE, Forbes BC, Jones BM, Kholodov AL, Kropp H, Malhotra A (2018b) Reviews and syntheses: changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 15:5287–5313. https://doi.org/10.5194/bg-15-5287-2018

    Article  Google Scholar 

  • Lupascu M, Welker J, Seibt U, Maseyk K, Xu X, Czimczik C (2014) High Arctic wetting reduces permafrost carbon feedbacks to climate warming. Nat Clim Chang 4(1):51

    Article  Google Scholar 

  • Ma Z, Peng C, Zhu Q, Chen H, Yu G, Li W, Zhou X, Wang W, Zhang W (2012) Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc Natl Acad Sci 109(7):2423–2427

    Article  Google Scholar 

  • MacDonald G, Kremenetski K, Beilman D (2007) Climate change and the northern Russian treeline zone. Philos Trans R Soc B Biol Sci 363(1501):2283–2299

    Article  Google Scholar 

  • Macias-Fauria M, Forbes BC, Zetterberg P, Kumpula T (2012) Eurasian Arctic greening reveals teleconnections and the potential for structurally novel ecosystems. Nat Clim Chang 2(8):613

    Article  Google Scholar 

  • Mack MC, Schuur EA, Bret-Harte MS, Shaver GR, Chapin FS III (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431(7007):440

    Article  Google Scholar 

  • Mack MC, Bret-Harte MS, Hollingsworth TN, Jandt RR, Schuur EA, Shaver GR, Verbyla DL (2011) Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475(7357):489

    Article  Google Scholar 

  • Magnússon R, Rotbarth R, Sass-Klaassen U, Heijmans MMPD, Limpens J, Kleijn D, Van Huissteden J, Maximov TC (submitted) Coupled vegetation succession and permafrost dynamics in thaw ponds in the Siberian lowland tundra. Ecology

    Google Scholar 

  • Malhotra A, Moore TR, Limpens J, Roulet NT (2018) Post-thaw variability in litter decomposition best explained by microtopography at an ice-rich permafrost peatland. Arctic, Antarctic, and Alpine Res 50 (1):e1415622

    Article  Google Scholar 

  • Malmer N, Johansson T, Olsrud M, Christensen TR (2005) Vegetation, climatic changes and net carbon sequestration in a North-Scandinavian subarctic mire over 30 years. Glob Chang Biol 11(11):1895–1909

    Google Scholar 

  • Marushchak M, Friborg T, Biasi C, Herbst M, Johansson T, Kiepe I, Liimatainen M, Lind S, Martikainen P, Virtanen T (2016) Methane dynamics in the subarctic tundra: combining stable isotope analyses, plot-and ecosystem-scale flux measurements. Biogeosciences 13(2):597–608

    Article  Google Scholar 

  • Mazhitova G, Karstkarel N, Oberman N, Romanovsky V, Kuhry P (2004) Permafrost and infrastructure in the Usa Basin (Northeast European Russia): possible impacts of global warming. AMBIO J Hum Environ 33(6):289–295

    Article  Google Scholar 

  • McGuire A, Wirth C, Apps M, Beringer J, Clein J, Epstein H, Kicklighter D, Bhatti J, Chapin Iii F, De Groot B (2002) Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes. J Veg Sci 13(3):301–314

    Article  Google Scholar 

  • McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo L, Hayes DJ, Heimann M, Lorenson TD, Macdonald RW, Roulet N (2009) Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr 79(4):523–555

    Article  Google Scholar 

  • Myers-Smith IH, Hik DS (2013) Shrub canopies influence soil temperatures but not nutrient dynamics: an experimental test of tundra snow–shrub interactions. Ecol Evol 3(11):3683–3700

    Article  Google Scholar 

  • Myers-Smith I, Harden JW, Wilmking M, Fuller CC, McGuire AD, Chapin FS III (2008) Wetland succession in a permafrost collapse: interactions between fire and thermokarst. Biogeosciences 5(5):1273–1286

    Article  Google Scholar 

  • Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Lévesque E (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6(4):045509

    Article  Google Scholar 

  • Myers-Smith IH, Elmendorf SC, Beck PS, Wilmking M, Hallinger M, Blok D, Tape KD, Rayback SA, Macias-Fauria M, Forbes BC (2015) Climate sensitivity of shrub growth across the tundra biome. Nat Clim Chang 5(9):887

    Article  Google Scholar 

  • Myneni R, Dong J, Tucker C, Kaufmann R, Kauppi P, Liski J, Zhou L, Alexeyev V, Hughes M (2001) A large carbon sink in the woody biomass of northern forests. Proc Natl Acad Sci 98(26):14784–14789

    Article  Google Scholar 

  • Natali SM, Schuur EA, Trucco C, Pries CEH, Crummer KG, Lopez AFB (2011) Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra. Glob Chang Biol 17(3):1394–1407

    Article  Google Scholar 

  • Natali SM, Schuur EA, Webb EE, Pries CEH, Crummer KG (2014) Permafrost degradation stimulates carbon loss from experimentally warmed tundra. Ecology 95(3):602–608

    Article  Google Scholar 

  • Natali SM, Schuur EAG, Mauritz M, Schade JD, Celis G, Crummer KG, Johnston C, Krapek J, Pegoraro E, Salmon VG, Webb EE (2015) Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. J Geophys Res Biogeo 120(3):525–537. https://doi.org/10.1002/2014jg002872

    Article  Google Scholar 

  • Nauta AL, Heijmans MMPD, Blok D, Limpens J, Elberling B, Gallagher A, Li B, Petrov RE, Maximov TC, van Huissteden J, Berendse F (2014) Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nat Clim Chang 5(1):67–70. https://doi.org/10.1038/nclimate2446

    Article  Google Scholar 

  • Nelson FE, Anisimov OA, Shiklomanov NI (2002) Climate change and hazard zonation in the circum-Arctic permafrost regions. Nat Hazards 26(3):203–225

    Article  Google Scholar 

  • Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan E, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15(12):684–692

    Article  Google Scholar 

  • Nitze I, Grosse G, Jones BM, Romanovsky VE, Boike J (2018) Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and subarctic. Nat Commun 9(1):5423. https://doi.org/10.1038/s41467-018-07663-3

    Article  Google Scholar 

  • Norby RJ, Zak DR (2011) Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu Rev Ecol Evol Syst 42:181–203

    Article  Google Scholar 

  • Nossov DR, Jorgenson MT, Kielland K, Kanevskiy MZ (2013) Edaphic and microclimatic controls over permafrost response to fire in interior Alaska. Environ Res Lett 8(3):035013

    Article  Google Scholar 

  • O’Donnell JA, Jorgenson MT, Harden JW, McGuire AD, Kanevskiy MZ, Wickland KP (2012) The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland. Ecosystems 15(2):213–229

    Article  Google Scholar 

  • Oberbauer SF, Tweedie CE, Welker JM, Fahnestock JT, Henry GH, Webber PJ, Hollister RD, Walker MD, Kuchy A, Elmore E (2007) Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients. Ecol Monogr 77(2):221–238

    Article  Google Scholar 

  • Ohta T, Maximov TC, Dolman AJ, Nakai T, van der Molen MK, Kononov AV, Maximov AP, Hiyama T, Iijima Y, Moors EJ (2008) Interannual variation of water balance and summer evapotranspiration in an eastern Siberian larch forest over a 7-year period (1998–2006). Agric For Meteorol 148(12):1941–1953

    Article  Google Scholar 

  • Olefeldt D, Turetsky MR, Crill PM, McGuire AD (2013) Environmental and physical controls on northern terrestrial methane emissions across permafrost zones. Glob Chang Biol 19(2):589–603

    Article  Google Scholar 

  • Osterkamp T, Jorgenson M, Schuur E, Shur Y, Kanevskiy M, Vogel J, Tumskoy V (2009) Physical and ecological changes associated with warming permafrost and thermokarst in interior Alaska. Permafr Periglac Process 20(3):235–256

    Article  Google Scholar 

  • Oulehle F, Rowe E, Myška O, Chuman T, Evans C (2016) Plant functional type affects nitrogen use efficiency in high-Arctic tundra. Soil Biol Biochem 94:19–28

    Article  Google Scholar 

  • Palmtag J, Hugelius G, Lashchinskiy N, Tamstorf MP, Richter A, Elberling B, Kuhry P (2015) Storage, landscape distribution, and burial history of soil organic matter in contrasting areas of continuous permafrost. Arct Antarct Alp Res 47(1):71–88

    Article  Google Scholar 

  • Parmentier F, Van Der Molen M, Van Huissteden J, Karsanaev S, Kononov A, Suzdalov D, Maximov T, Dolman A (2011) Longer growing seasons do not increase net carbon uptake in the northeastern Siberian tundra. J Geophys Res Biogeo 116(G4):G04013. https://doi.org/10.1029/2011JG001653

    Article  Google Scholar 

  • Payette S (2007) Contrasted dynamics of northern Labrador tree lines caused by climate change and migrational lag. Ecology 88(3):770–780

    Article  Google Scholar 

  • Phoenix GK, Bjerke JW (2016) Arctic browning: extreme events and trends reversing arctic greening. Glob Chang Biol 22(9):2960–2962

    Article  Google Scholar 

  • Piao S, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang J, Barr A, Chen A (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451(7174):49

    Article  Google Scholar 

  • Piao S, Wang X, Ciais P, Zhu B, Wang T, Liu J (2011) Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob Chang Biol 17(10):3228–3239

    Article  Google Scholar 

  • Pielke RA, Vidale PL (1995) The boreal forest and the polar front. J Geophys Res Atmos 100(D12):25755–25758

    Article  Google Scholar 

  • Podur J, Martell DL, Csillag F (2003) Spatial patterns of lightning-caused forest fires in Ontario, 1976–1998. Ecol Model 164(1):1–20

    Article  Google Scholar 

  • Price D, McKenney D, Joyce L, Siltanen R, Papadopol P, Lawrence K (2011) High resolution interpolation of IPCC AR4 GCM climate scenarios for Canada. Nat Resour Can, Can for Serv North for Cent, Edmonton, Alta Inf rep NOR-X-421

    Google Scholar 

  • Price DT, Alfaro R, Brown K, Flannigan M, Fleming R, Hogg E, Girardin M, Lakusta T, Johnston M, McKenney D (2013) Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ Rev 21(4):322–365

    Article  Google Scholar 

  • Raghoebarsing AA, Smolders AJ, Schmid MC, Rijpstra WIC, Wolters-Arts M, Derksen J, Jetten MS, Schouten S, Damsté JSS, Lamers LP (2005) Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436(7054):1153

    Article  Google Scholar 

  • Randerson JT, Liu H, Flanner MG, Chambers SD, Jin Y, Hess PG, Pfister G, Mack M, Treseder K, Welp L (2006) The impact of boreal forest fire on climate warming. Science 314(5802):1130–1132

    Article  Google Scholar 

  • Rasmus S, Lundell R, Saarinen T (2011) Interactions between snow, canopy, and vegetation in a boreal coniferous forest. Plant Ecol Diver 4(1):55–65

    Article  Google Scholar 

  • Raynolds MK, Walker DA, Ambrosius KJ, Brown J, Everett KR, Kanevskiy M, Kofinas GP, Romanovsky VE, Shur Y, Webber PJ (2014) Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay oilfield, Alaska. Glob Chang Biol 20(4):1211–1224. https://doi.org/10.1111/gcb.12500

    Article  Google Scholar 

  • Reichle L, Epstein H, Bhatt U, Raynolds M, Walker D (2018) Spatial heterogeneity of the temporal dynamics of Arctic tundra vegetation. Geophys Res Lett 45(17):9206–9215

    Article  Google Scholar 

  • Reyes FR, Lougheed VL (2015) Rapid nutrient release from permafrost thaw in arctic aquatic ecosystems. Arct Antarct Alp Res 47(1):35–48

    Article  Google Scholar 

  • Robinson CH, Wookey PA, Lee JA, Callaghan TV, Press MC (1998) Plant community responses to simulated environmental change at a high arctic polar semi-desert. Ecology 79(3):856–866

    Article  Google Scholar 

  • Rocha AV, Loranty MM, Higuera PE, Mack MC, Hu FS, Jones BM, Breen AL, Rastetter EB, Goetz SJ, Shaver GR (2012) The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing. Environ Res Lett 7(4):044039

    Article  Google Scholar 

  • Sawamoto T, Hatano R, Yajima T, Takahashi K, Isaev A (2000) Soil respiration in Siberian taiga ecosystems with different histories of forest fire. Soil Sci Plant Nutr 46(1):31–42

    Article  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walkerk B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  Google Scholar 

  • Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, Van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461(7260):53

    Article  Google Scholar 

  • Schothorst C (1977) Subsidence of low moor peat soils in the western Netherlands. Geoderma 17(4):265–291

    Article  Google Scholar 

  • Schuur EA, Crummer KG, Vogel JG, Mack MC (2007) Plant species composition and productivity following permafrost thaw and thermokarst in Alaskan tundra. Ecosystems 10(2):280–292

    Article  Google Scholar 

  • Shiklomanov NI, Streletskiy DA, Swales TB, Kokorev VA (2017) Climate change and stability of urban infrastructure in Russian permafrost regions: prognostic assessment based on GCM climate projections. Geogr Rev 107(1):125–142

    Article  Google Scholar 

  • Shur Y, Jorgenson M (2007) Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafr Periglac Process 18(1):7–19

    Article  Google Scholar 

  • Siewert MB, Hanisch J, Weiss N, Kuhry P, Maximov TC, Hugelius G (2015) Comparing carbon storage of Siberian tundra and taiga permafrost ecosystems at very high spatial resolution. J Geophys Res Biogeo 120(10):1973–1994

    Article  Google Scholar 

  • Sistla SA, Moore JC, Simpson RT, Gough L, Shaver GR, Schimel JP (2013) Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497(7451):615

    Article  Google Scholar 

  • Sjögersten S, Caul S, Daniell T, Jurd A, O’Sullivan O, Stapleton C, Titman JJ (2016) Organic matter chemistry controls greenhouse gas emissions from permafrost peatlands. Soil Biol Biochem 98:42–53

    Article  Google Scholar 

  • Soja AJ, Tchebakova NM, French NH, Flannigan MD, Shugart HH, Stocks BJ, Sukhinin AI, Parfenova E, Chapin FS III, Stackhouse PW Jr (2007) Climate-induced boreal forest change: predictions versus current observations. Glob Planet Chang 56(3–4):274–296

    Article  Google Scholar 

  • Soudzilovskaia NA, Bodegom PM, Cornelissen JH (2013) Dominant bryophyte control over high-latitude soil temperature fluctuations predicted by heat transfer traits, field moisture regime and laws of thermal insulation. Funct Ecol 27(6):1442–1454

    Article  Google Scholar 

  • Stephens BB, Gurney KR, Tans PP, Sweeney C, Peters W, Bruhwiler L, Ciais P, Ramonet M, Bousquet P, Nakazawa T (2007) Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science 316(5832):1732–1735

    Article  Google Scholar 

  • Street LE, Stoy PC, Sommerkorn M, Fletcher BJ, Sloan VL, Hill TC, Williams M (2012) Seasonal bryophyte productivity in the sub-Arctic: a comparison with vascular plants. Funct Ecol 26(2):365–378

    Article  Google Scholar 

  • Ström L, Christensen TR (2007) Below ground carbon turnover and greenhouse gas exchanges in a sub-arctic wetland. Soil Biol Biochem 39(7):1689–1698

    Article  Google Scholar 

  • Ström L, Ekberg A, Mastepanov M, Røjle Christensen T (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob Chang Biol 9(8):1185–1192

    Article  Google Scholar 

  • Ström L, Mastepanov M, Christensen TR (2005) Species-specific effects of vascular plants on carbon turnover and methane emissions from wetlands. Biogeochemistry 75(1):65–82

    Article  Google Scholar 

  • Ström L, Tagesson T, Mastepanov M, Christensen TR (2012) Presence of Eriophorum scheuchzeri enhances substrate availability and methane emission in an Arctic wetland. Soil Biol Biochem 45:61–70

    Article  Google Scholar 

  • Sturm M, Holmgren J, McFadden JP, Liston GE, Chapin FS III, Racine CH (2001) Snow–shrub interactions in Arctic tundra: a hypothesis with climatic implications. J Clim 14(3):336–344

    Article  Google Scholar 

  • Sturm M, Douglas T, Racine C, Liston GE (2005) Changing snow and shrub conditions affect albedo with global implications. J Geophys Res Biogeo 110(G1):G01004. https://doi.org/10.1029/2005JG000013

    Article  Google Scholar 

  • Sullivan PF, Sommerkorn M, Rueth HM, Nadelhoffer KJ, Shaver GR, Welker JM (2007) Climate and species affect fine root production with long-term fertilization in acidic tussock tundra near Toolik Lake, Alaska. Oecologia 153(3):643–652

    Article  Google Scholar 

  • Takakai F, Desyatkin AR, Lopez CL, Fedorov AN, Desyatkin RV, Hatano R (2008) Influence of forest disturbance on CO2, CH4 and N2O fluxes from larch forest soil in the permafrost taiga region of eastern Siberia. Soil Sci Plant Nutr 54(6):938–949

    Article  Google Scholar 

  • Tarnocai C (2006) The effect of climate change on carbon in Canadian peatlands. Glob Planet Chang 53(4):222–232

    Article  Google Scholar 

  • Taş N, Prestat E, McFarland JW, Wickland KP, Knight R, Berhe AA, Jorgenson T, Waldrop MP, Jansson JK (2014) Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J 8(9):1904

    Article  Google Scholar 

  • Tchebakova N, Parfenova E, Soja A (2009) The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate. Environ Res Lett 4(4):045013

    Article  Google Scholar 

  • Team CCAVM (2003) Circumpolar Arctic vegetation map. Conservation of Arctic Flora and Fauna (CAFF) Map No 1. Anchorage, AK. US Fish and Wildlife Service. www.geobotany.uaf.edu/cavm

  • Teltewskoi A, Beermann F, Beil I, Bobrov A, De Klerk P, Lorenz S, Lüder A, Michaelis D, Joosten H (2016) 4000 years of changing wetness in a permafrost polygon Peatland (Kytalyk, NE Siberia): a comparative high-resolution multi-proxy study. Permafr Periglac Process 27(1):76–95

    Article  Google Scholar 

  • Townsend-Small A, Ferrara TW, Lyon DR, Fries AE, Lamb BK (2016) Emissions of coalbed and natural gas methane from abandoned oil and gas wells in the United States. Geophys Res Lett 43(5):2283–2290

    Article  Google Scholar 

  • Trucco C, Schuur EAG, Natali SM, Belshe EF, Bracho R, Vogel J (2012) Seven-year trends of CO2 exchange in a tundra ecosystem affected by long-term permafrost thaw. J Geophys Res Biogeo 117(G2):G02031. https://doi.org/10.1029/2011jg001907

    Article  Google Scholar 

  • Turetsky MR, Wieder RK, Williams CJ, Vitt DH (2000) Organic matter accumulation, peat chemistry, and permafrost melting in peatlands of boreal Alberta. Ecoscience 7(3):115–122

    Article  Google Scholar 

  • Turetsky MR, Wieder RK, Vitt DH (2002) Boreal peatland C fluxes under varying permafrost regimes. Soil Biol Biochem 34(7):907–912

    Article  Google Scholar 

  • Turetsky MR, Amiro BD, Bosch E, Bhatti JS (2004) Historical burn area in western Canadian peatlands and its relationship to fire weather indices. Glob Biogeochem Cycles 18(4):GB4014. https://doi.org/10.1029/2004GB002222

    Article  Google Scholar 

  • Turetsky M, Wieder R, Vitt D, Evans R, Scott K (2007) The disappearance of relict permafrost in boreal North America: effects on peatland carbon storage and fluxes. Glob Chang Biol 13(9):1922–1934

    Article  Google Scholar 

  • Turetsky MR, Kane ES, Harden JW, Ottmar RD, Manies KL, Hoy E, Kasischke ES (2011a) Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat Geosci 4(1):27

    Article  Google Scholar 

  • Turetsky M, Donahue W, Benscoter B (2011b) Experimental drying intensifies burning and carbon losses in a northern peatland. Nat Commun 2:514

    Article  Google Scholar 

  • Turetsky MR, Bond-Lamberty B, Euskirchen E, Talbot J, Frolking S, McGuire AD, Tuittila ES (2012) The resilience and functional role of moss in boreal and arctic ecosystems. New Phytol 196(1):49–67

    Article  Google Scholar 

  • Turetsky MR, Kotowska A, Bubier J, Dise NB, Crill P, Hornibrook ER, Minkkinen K, Moore TR, Myers-Smith IH, Nykanen H, Olefeldt D, Rinne J, Saarnio S, Shurpali N, Tuittila ES, Waddington JM, White JR, Wickland KP, Wilmking M (2014) A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Glob Chang Biol 20(7):2183–2197. https://doi.org/10.1111/gcb.12580

    Article  Google Scholar 

  • Ukraintseva N, Leibman M, Streletskaya I, Mikhaylova T (2014) Geochemistry of plant-soil-permafrost system on landslide-affected slopes, Yamal, Russia as an indicator of landslide age. In: Landslides in cold regions in the context of climate change. Springer, Cham, pp 107–131

    Google Scholar 

  • Van Der Wal R, Stien A (2014) High-arctic plants like it hot: a long-term investigation of between-year variability in plant biomass. Ecology 95(12):3414–3427

    Article  Google Scholar 

  • Van der Werf GR, Randerson JT, Giglio L, Collatz G, Mu M, Kasibhatla PS, Morton DC, DeFries R, Yv J, van Leeuwen TT (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys 10(23):11707–11735

    Article  Google Scholar 

  • Van Der Werf GR, Randerson JT, Giglio L, Van Leeuwen TT, Chen Y, Rogers BM, Mu M, Van Marle MJ, Morton DC, Collatz GJ (2017) Global fire emissions estimates during 1997-2016. Earth System Science Data 9:697–720. https://doi.org/10.5194/essd-9-697-2017

    Article  Google Scholar 

  • Van Huissteden J, Dolman AJ (2012) Soil carbon in the Arctic and the permafrost carbon feedback. Curr Opin Environ Sustain 4(5):545–551. https://doi.org/10.1016/j.cosust.2012.09.008

    Article  Google Scholar 

  • Van Huissteden J, Maximov TC, Dolman AJ (2005) High methane flux from an arctic floodplain (Indigirka lowlands, eastern Siberia). J Geophys Res Biogeo 110(G2):G02002. https://doi.org/10.1029/2005jg000010

    Article  Google Scholar 

  • Van Huissteden J, Maximov TC, Dolman AJ (2009) Correction to “High methane flux from an arctic floodplain (Indigirka lowlands, eastern Siberia). J Geophys Res Biogeosci 114 (G2):n/a–n/a. doi:https://doi.org/10.1029/2009jg001040

    Article  Google Scholar 

  • van Thienen-Visser K, Pruiksma J, Breunese J (2015) Compaction and subsidence of the Groningen gas field in the Netherlands. Proceedings of the International Association of Hydrological Sciences 372:367–373

    Article  Google Scholar 

  • Van Wijk M, Clemmensen KE, Shaver G, Williams M, Callaghan T, Chapin F III, Cornelissen J, Gough L, Hobbie S, Jonasson S (2004) Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: generalizations and differences in ecosystem and plant type responses to global change. Glob Chang Biol 10(1):105–123

    Article  Google Scholar 

  • Verbyla D (2011) Browning boreal forests of western North America. Environ Res Lett 6(4):041003

    Article  Google Scholar 

  • Verhoeven J, Toth E (1995) Decomposition of Carex and Sphagnum litter in fens: effect of litter quality and inhibition by living tissue homogenates. Soil Biol Biochem 27(3):271–275

    Article  Google Scholar 

  • Vitt D, Halsey LA, Zoltai SC (2000) The changing landscape of Canada’s western boreal forest: the current dynamics of permafrost. Can J For Res 30:283–287

    Article  Google Scholar 

  • Vogel J, Schuur EA, Trucco C, Lee H (2009) Response of CO2 exchange in a tussock tundra ecosystem to permafrost thaw and thermokarst development. J Geophys Res Biogeo 114(G4)

    Google Scholar 

  • Vuorinen KE, Oksanen L, Oksanen T, Pyykönen A, Olofsson J, Virtanen R (2017) Open tundra persist, but arctic features decline—vegetation changes in the warming Fennoscandian tundra. Glob Chang Biol 23(9):3794–3807

    Article  Google Scholar 

  • Walker DA, Raynolds MK, Daniëls FJ, Einarsson E, Elvebakk A, Gould WA, Katenin AE, Kholod SS, Markon CJ, Melnikov ES (2005) The circumpolar Arctic vegetation map. J Veg Sci 16(3):267–282

    Article  Google Scholar 

  • Walker MD, Wahren CH, Hollister RD, Henry GH, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci 103(5):1342–1346

    Article  Google Scholar 

  • Walter K, Edwards M, Grosse G, Zimov S, Chapin F (2007) Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation. Science 318(5850):633–636

    Article  Google Scholar 

  • Walter-Anthony KM, Zimov SA, Grosse G, Jones MC, Anthony PM, Chapin FS 3rd, Finlay JC, Mack MC, Davydov S, Frenzel P, Frolking S (2014) A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511(7510):452–456. https://doi.org/10.1038/nature13560

    Article  Google Scholar 

  • Wang P, Heijmans MM, Mommer L, van Ruijven J, Maximov TC, Berendse F (2016) Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature. Environ Res Lett 11(5):055003

    Article  Google Scholar 

  • Wang P, van Ruijven J, Heijmans MM, Berendse F, Maksimov A, Maximov T, Mommer L (2017) Short-term root and leaf decomposition of two dominant plant species in a Siberian tundra. Pedobiologia 65:68–76

    Article  Google Scholar 

  • Wang P, Limpens J, Nauta A, van Huissteden C, Quirina van Rijssel S, Mommer L, de Kroon H, Maximov TC, Heijmans MM (2018) Depth-based differentiation in nitrogen uptake between graminoids and shrubs in an Arctic tundra plant community. J Veg Sci 29(1):34–41

    Article  Google Scholar 

  • Wassen MJ, Venterink HO, Lapshina ED, Tanneberger F (2005) Endangered plants persist under phosphorus limitation. Nature 437(7058):547

    Article  Google Scholar 

  • Weintraub MN, Schimel JP (2005) Nitrogen cycling and the spread of shrubs control changes in the carbon balance of arctic tundra ecosystems. Bioscience 55(5):408–415

    Article  Google Scholar 

  • Wookey PA, Aerts R, Bardgett RD, Baptist F, Bråthen KA, Cornelissen JH, Gough L, Hartley IP, Hopkins DW, Lavorel S (2009) Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Glob Chang Biol 15(5):1153–1172

    Article  Google Scholar 

  • Yarie J, Van Cleve K (2010) Long-term monitoring of climatic and nutritional affects on tree growth in interior Alaska. Can J For Res 40(7):1325–1335

    Article  Google Scholar 

  • Zeh L, Limpens J, Erhagen B, Bragazza L, Kalbitz K (2019) Plant functional types and temperature control carbon input via roots in peatland soils. Plant Soil:1–20

    Google Scholar 

  • Zhang N, Yasunari T, Ohta T (2011) Dynamics of the larch taiga–permafrost coupled system in Siberia under climate change. Environ Res Lett 6(2):024003

    Article  Google Scholar 

  • Zhu Z, Piao S, Myneni RB, Huang M, Zeng Z, Canadell JG, Ciais P, Sitch S, Friedlingstein P, Arneth A (2016a) Greening of the earth and its drivers. Nat Clim Chang 6(8):791

    Article  Google Scholar 

  • Zhu Q, Iversen CM, Riley WJ, Slette IJ, Vander Stel HM (2016b) Root traits explain observed tundra vegetation nitrogen uptake patterns: implications for trait-based land models. J Geophys Res Biogeo 121(12):3101–3112

    Article  Google Scholar 

  • Zimov S, Zimov N, Tikhonov A, Chapin F III (2012) Mammoth steppe: a high-productivity phenomenon. Quat Sci Rev 57:26–45

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Huissteden, J. (2020). Vegetation Change. In: Thawing Permafrost. Springer, Cham. https://doi.org/10.1007/978-3-030-31379-1_6

Download citation

Publish with us

Policies and ethics